Question

A wooden ball weighing 8.50 N is pushed into the air by a vertical spring with...

A wooden ball weighing 8.50 N is pushed into the air by a vertical spring with a spring constant of 1190 N/m . If the spring was compressed 0.170 m before pushing the ball straight up, what is the maximum height that the ball will reach above the initial position?

Homework Answers

Answer #1

Using energy conservation:

KEi + PEi = KEf + PEf

KEi = 0, since initially spring was compressed and ball was at rest

KEf = 0, since at max height speed of ball will be zero,

PEi = (1/2)*k*x^2 = spring potential energy (assuming this as a reference point where GPE is zero)

PEf = m*g*(h + x) = Gravitational PE at 'h' height

So,

0 + (1/2)*k*x^2 = m*g*(h + x)

h = ((1/2)*k*x^2 - m*g*x)/(m*g)

m*g = Weight of ball = 8.50 N

k = 1190 N/m

So,

h = (0.5*1190*0.170^2 - 8.50*0.170)/8.50

h = 1.853 m = max height of ball

h + x = max height above initial position = 1.853 + 0.170 = 2.023 m = 2.0 m

Let me know if you've any query.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A vertical elastic spring with a spring constant of 619 N/m is compressed 25 cm. A...
A vertical elastic spring with a spring constant of 619 N/m is compressed 25 cm. A ball of mass 320 grams is placed at rest on top of the compressed spring. Take that the height of the ball at this position is zero. The spring is then released so the ball is shot straight up. a)Find the total initial energy of the system consisting of the ball and the spring. b)Find the total potential (i.e before the ball is shot)...
A ball with mass m = 50.0 g, is sitting on a vertical spring whose force...
A ball with mass m = 50.0 g, is sitting on a vertical spring whose force constant is 120.0 N/m. The initial position of the spring is at y = 0.00 m. The spring is compressed downward a distance x = 0.200 m. From the compressed position, how high will the ball bearing rise? How high is does the ball bearing rise above the position at y = 0.00 m? What is the kinetic energy of the ball at the...
a 0.2 kg mass is pushed down against a vertical spring with a spring constant k...
a 0.2 kg mass is pushed down against a vertical spring with a spring constant k = 1000 N/m. when the spring is compressed by 10 cm, the object is let go. what vertical height above the release point will the obhect reach? give answer in meters
A spring-loaded toy gun is used to shoot a ball of mass m=1.50kg straight up in...
A spring-loaded toy gun is used to shoot a ball of mass m=1.50kg straight up in the air. The spring has spring constant k=667 N/m. If the spring is compressed a distance of 19.0 cm from its equilibrium position y=0 and then released, the ball reaches a maximum height hmax (measured from the equilibrium position of the spring). There is no air resistance, and the ball never touches the inside of the gun. Assume that all movement occurs in a...
A spring-loaded toy gun is used to shoot a ball straight up in the air. (Figure...
A spring-loaded toy gun is used to shoot a ball straight up in the air. (Figure 1)The ball reaches a maximum height H, measured from the equilibrium position of the spring. -The same ball is shot straight up a second time from the same gun, but this time the spring is compressed only half as far before firing. How far up does the ball go this time? Neglect friction. Assume that the spring is ideal and that the distance by...
3. An 8 kg stone rests on a vertical spring of force constant 785 N /...
3. An 8 kg stone rests on a vertical spring of force constant 785 N / m. The stone is pushed down about 30 cm and released. (a) Obtain the elastic potential energy of the compressed spring just before releasing it (b) Obtain the maximum height reached by the stone (c) Obtain the velocity just after it leaves the spring.
A vertical spring with a spring constant of 320 N/m is mounted on the floor. From...
A vertical spring with a spring constant of 320 N/m is mounted on the floor. From directly above the spring, which is unstrained, a 0.23-kg block is dropped from rest. It collides with and sticks to the spring, which is compressed by 3.3 cm in bringing the block to a momentary halt. Assuming air resistance is negligible, from what height above the compressed spring was the block dropped?
A ball of a mass m starting from rest falls a vertical distance h=65.0 cm before...
A ball of a mass m starting from rest falls a vertical distance h=65.0 cm before striking a vertical coiled spring which is compressed an amount Y =18.2 cm . The spring constant is given as 1460 N / m . a) what was the velocity of the ball just as it touched the spring (1) ? b) How much time (t) did it take for the ball to reach the spring? c) Calculate the mass (m). d) with what...
1.The potential energy stored in the compressed spring of a dart gun, with a spring constant...
1.The potential energy stored in the compressed spring of a dart gun, with a spring constant of 62.00 N/m, is 0.980 J. Find by how much is the spring is compressed. 2.A 0.170 kg dart is fired straight up. Find the vertical distance the dart travels from its position when the spring is compressed to its highest position. 3.The same dart is now fired horizontally from a height of 4.30 m. The dart remains in contact until the spring reaches...
In a spring gun system, a spring with a spring force constant 430 N/mN/m  , is compressed...
In a spring gun system, a spring with a spring force constant 430 N/mN/m  , is compressed 0.11 mm . When fired, 80.7 %% of the elastic potential energy stored in the spring is eventually converted into kinetic energy of a 6.50×10−2 kgkg uniform ball that is rolling without slipping at the base of a ramp. The ball continues to roll without slipping up the ramp with 89.6 %% of the kinetic energy at the bottom converted into an increase in...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT