Question

Block A (mass 40 kg) and block B (mass 80 kg) are connected by a string...

Block A (mass 40 kg) and block B (mass 80 kg) are connected by a string of negligible mass as shown in the figure. The pulley is frictionless and has a negligible mass. If the coefficient of kinetic friction between block A and the incline is μk = 0.24 and the blocks are released from rest, determine the change in the kinetic energy of block A as it moves from C to D, a distance of 19 m up the incline.
J

Homework Answers

Answer #1

___________________________

Work done on A = change in KE of A

Thus, we can actually get just the work done on A.

For block A, the sum of forces is

T - mA g sin37 - uk mA g cos 37 = mA a

Plugging values in,

T - 311.05 = 40a ___ [1]

For block B,

mB g - T = mB a

Thus,

784 - T = 80a _____[2]

From equations 1 and 2,

a = 3.9413 m/s^2

Thus, as work on A = mA a d = 40 x 3.9413 x 19 = 2.9954 x 103 J

Work on A = change in KE of A = 2.9954 x 103 J

___________________________

Please rate

if any mistake in this answer please comment i will clarify your doubt . thank you

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Block A (mass 40 kg) and block B (mass 80 kg) are connected by a string...
Block A (mass 40 kg) and block B (mass 80 kg) are connected by a string of negligible mass as shown in the figure. The pulley is frictionless and has a negligible mass. If the coefficient of kinetic friction between block A and the incline is μk = 0.26 and the blocks are released from rest, determine the change in the kinetic energy of block A as it moves from C to D, a distance of 23 m up the...
7) A block of mass m1 = 38 kg on a horizontal surface is connected to...
7) A block of mass m1 = 38 kg on a horizontal surface is connected to a mass m2 = 21.6 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction between m1 and the horizontal surface is 0.24. (a) What is the magnitude of the acceleration (in m/s2) of the hanging mass? Answer:    m/s2 (b) Determine the...
Two blocks with masses m1 = 1.10 kg and m2 = 3.50 kg are connected by...
Two blocks with masses m1 = 1.10 kg and m2 = 3.50 kg are connected by a massless string. They are released from rest. The coefficent of kinetic friction between the upper block and the surface is 0.440. Assume that the pulley has a negligible mass and is frictionless, and calculate the speed of the blocks after they have moved a distance 68.0 cm.
Two blocks A and B with masses of 50 and 100 kg, respectively, are connected by...
Two blocks A and B with masses of 50 and 100 kg, respectively, are connected by a rope, the pulley is frictionless and of negligible mass. The coefficient of kinetic friction between block A and the inclined plane is 0.25. If block A moves from C to D a distance of 10m. Assume part of rest. Angle is 35. Determine: a) The change in kinetic energy of block A, b) The change in potential energy in block B, c) Calculate...
Two blocks of equal mass mA=mB= 4.75 kgkg are connected by a rope over a frictionless...
Two blocks of equal mass mA=mB= 4.75 kgkg are connected by a rope over a frictionless pulley, as shown in the figure. Block B begins to fall and pulls Block A up the incline. Block A is on a rough incline with the coefficient of kinetic friction of μk =0.10 between the block and the incline. The angle of the incline is θ=30°. a) Calculate the normal force on block A. b) Calculate the frictional force on block A from...
ball of mass m1 =5.9 kg and a block of mass m2 =3.3 kg are connected...
ball of mass m1 =5.9 kg and a block of mass m2 =3.3 kg are connected with a lightweight string over a pulley with moment of inertia I and radius R=0.25m. The coefficient of kinetic friction between the table top and the block of mass m2 is μk = 0.5. If the magnitude of the acceleration is a=2.9m/s2. a)What are the tensions T1 and T2 in the string. T1= N T2= N b)Calculate the moment of inertia of the pulley....
Two blocks, each of mass m = 6.00 kg , are connected by a massless rope...
Two blocks, each of mass m = 6.00 kg , are connected by a massless rope and start sliding down a slope of incline θ = 36.0 ∘ at t=0.000 s. The slope's top portion is a rough surface whose coefficient of kinetic friction is μk = 0.300. At a distance d = 1.90 m from block A's initial position the slope becomes frictionless. What is the velocity of the blocks when block A reaches this frictional transition point? Assume...
Two blocks with mass m1 = 7.6 kg and m2 = 8.1 kg are connected by...
Two blocks with mass m1 = 7.6 kg and m2 = 8.1 kg are connected by a massless string over a frictionless and massless pulley. The angle of the incline is equal to 32.5°. The kinetic coefficient of friction between m1 and the incline is 0.11. What is the minimum value of the static friction coefficient that will prevent m1 from starting to move if it is at rest. Find the magnitude of the acceleration of the system if m1...
Two blocks with masses M1 and M2 are connected by a massless string that passes over...
Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown. M1 has a mass of 2.25 kg and is on an incline of θ1=46.5∘ with coefficient of kinetic friction μ1=0.205. M2 has a mass of 6.05 kg and is on an incline of θ2=33.5∘ with coefficient of kinetic friction μ2=0.105. The two‑block system is in motion with the block of mass M2 sliding down the ramp. Find the magnitude...
Block X and Y are connected by a string that passes over a pulley, as shown...
Block X and Y are connected by a string that passes over a pulley, as shown in the firgure. Block Y has more mass than Block X. The string and pulley have negligble mass, and the pulley rotates with negligible friction. After the block are released from rest, what happens to the mechanical energy Fmech of the system consisting of the two block and Earth?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT