Question

The figure shows a thin rod, of length L = 2.10 m and negligible mass, that...

The figure shows a thin rod, of length L = 2.10 m and negligible mass, that can pivot about one end to rotate in a vertical circle. A heavy ball of mass m = 7.10 kg is attached to the other end. The rod is pulled aside to angle θ0 = 5.3° and released with initial velocity v→0 = 0. (a) What is the speed of the ball at the lowest point? (b) Does the speed increase, decrease, or remain the same if
the mass is increased?

Homework Answers

Answer #1

The solution is given below.

(a)

(b)

As we see from part a that v is independent of the mass m .

So the speed remains same if the mass is increased .

Thank you.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The uniform thin rod in the figure below has mass M = 2.00 kg and length...
The uniform thin rod in the figure below has mass M = 2.00 kg and length L = 2.87 m and is free to rotate on a frictionless pin. At the instant the rod is released from rest in the horizontal position, find the magnitude of the rod's angular acceleration, the tangential acceleration of the rod's center of mass, and the tangential acceleration of the rod's free end. HINT An illustration shows the horizontal initial position and vertical final position...
The figure shows a ball with mass m = 0.450 kg attached to the end of...
The figure shows a ball with mass m = 0.450 kg attached to the end of a thin rod with length L = 0.415 m and negligible mass. The other end of the rod is pivoted so that the ball can move in a vertical circle. The rod is held horizontally as shown and then given enough of a downward push to cause the ball to swing down and around and just reach the vertically upward position, with zero speed...
The figure shows a ball with mass m = 0.295 kg attached to the end of...
The figure shows a ball with mass m = 0.295 kg attached to the end of a thin rod with length L = 0.306 m and negligible mass. The other end of the rod is pivoted so that the ball can move in a vertical circle. The rod is held horizontally as shown and then given enough of a downward push to cause the ball to swing down and around and just reach the vertically upward position, with zero speed...
A cylindrical rod of mass 0.82 kg and length 1.88 m is free to rotate about...
A cylindrical rod of mass 0.82 kg and length 1.88 m is free to rotate about a pivot fixed at one end. A ball with a mass of 3.2 kg is attached to the other end of the rod. The rod-and ball system is held in a horizontal position by a vertical force that acts 1.41 m from the pivot. The force is then removed, and the rod-and-ball swings down. (a) What was the vertical force used to hold the...
A cylindrical rod of mass 0.82 kg and length 1.88 m is free to rotate about...
A cylindrical rod of mass 0.82 kg and length 1.88 m is free to rotate about a pivot fixed at one end. A ball (mass 3.2 kg) is attached to the other end of the rod. The rod-and- ball system is held in a horizontal position by a vertical force that acts 1.41 m from the pivot. The force is then removed, and the rod-and-ball swings down. (a) (4 points) What was the vertical force used to hold the system...
The assembly shown in the figure below consists of a thin rod of length ℓ =...
The assembly shown in the figure below consists of a thin rod of length ℓ = 23.2 cm and mass m = 1.20 kg with a solid sphere of diameter d = 10.0 cm and mass M = 2.00 kg attached to its top. The assembly is free to pivot about a frictionless axle through the bottom of the rod. The assembly is initially vertical and at rest when it starts to rotate clockwise. A thin rod of length ℓ...
A thin, cylindrical rod ℓ = 27.0 cm long with a mass m = 1.20 kg...
A thin, cylindrical rod ℓ = 27.0 cm long with a mass m = 1.20 kg has a ball of diameter d = 10.00 cm and mass M = 2.00 kg attached to one end. The arrangement is originally vertical and stationary, with the ball at the top as shown in the figure below. The combination is free to pivot about the bottom end of the rod after being given a slight nudge. (a) After the combination rotates through 90...
A thin, cylindrical rod ℓ = 27.0 cm long with a mass m = 1.20 kg...
A thin, cylindrical rod ℓ = 27.0 cm long with a mass m = 1.20 kg has a ball of diameter d = 10.00 cm and mass M = 2.00 kg attached to one end. The arrangement is originally vertical and stationary, with the ball at the top as shown in the figure below. The combination is free to pivot about the bottom end of the rod after being given a slight nudge. Calculate the M.I of flywheel in moon...
A rod with length L and mass M hangs vertically on a frictionless, horizontal axel passing...
A rod with length L and mass M hangs vertically on a frictionless, horizontal axel passing through its center. A ball of mass m traveling horizontally at speed v0 hits and sticks to the very bottom tip of the rod. To what maximum angle, measured from vertical, does the rod, with the attached ball, rotate? Answer in terms m, M, v0, L, and g.
Two 2.4 kg balls are attached to the ends of a thin rod of negligible mass,...
Two 2.4 kg balls are attached to the ends of a thin rod of negligible mass, 54 cm in length. The rod is free to rotate in a vertical plane about a horizontal axis through its center. With the rod initially horizontal as shown, a 0.33 kg wad of wet putty drops onto one of the balls with a speed of 3.7 m/sec and sticks to it. 1)What is the ratio of the magnitude of angular momentum of the entire...