Question

An aircraft is cruising at a speed of M = 0.77. The freestream temperature is 222.77...

An aircraft is cruising at a speed of M = 0.77. The freestream temperature is 222.77 K, and ρ = 0.4097 kg/m^3.

The pressure is measured on a point along the wing, and it is found to be 9120 Pa.

Calculate the Cp for this point.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An aircraft flies at an altitude of 30,000 feet. Determine the air temperature (in [K]), air...
An aircraft flies at an altitude of 30,000 feet. Determine the air temperature (in [K]), air pressure (in [Pa]) and air density (in [kg/m3]) at this altitude, according to the standard atmosphere.
A small aircraft of mass 1200 kg is cruising at 250 km/h at an altitude of...
A small aircraft of mass 1200 kg is cruising at 250 km/h at an altitude of 2000 m. (i) What is the gravitational potential energy (relative to the ground), and what is the kinetic energy of the aircraft? (ii) If the pilot puts the aircraft into a dive, what will be the gravitational potential energy, what will be the kinetic energy, and what will be the speed when the aircraft reaches an altitude of 1500 m? Assume that the engine...
A turbojet aircraft is flying with a velocity of 320 m/s at a certain altitude, where...
A turbojet aircraft is flying with a velocity of 320 m/s at a certain altitude, where the ambient conditions are 32 kPa and -32°C. The pressure ratio across the compressor is 12, and the temperature at the turbine inlet is 1400K. Air enters the compressor at a rate of 40 kg/s, and the and the jet fuel has a heating value of 42700 kJ/kg. Assuming ideal operations for all components and constant specific heats for air at room temperature, (Cp=1.005...
A frequently quoted rule of thumb in aircraft design is that wings should produce about 1000...
A frequently quoted rule of thumb in aircraft design is that wings should produce about 1000 N of lift per square meter of wing. (The fact that a wing has a top and bottom surface does not double its area.) a)At takeoff the aircraft travels at 63.0 m/s, so that the air speed relative to the bottom of the wing is 63.0 m/s. Given the sea level density of air to be 1.29 kg/m3, how fast (in m/s) must it...
A spaceship of mass 2.3×106 kg is cruising at a speed of 6.0×106 m/s when the...
A spaceship of mass 2.3×106 kg is cruising at a speed of 6.0×106 m/s when the antimatter reactor fails, blowing the ship into three pieces. One section, having a mass of 4.7×105 kg , is blown straight backward with a speed of 1.8×106 m/s . A second piece, with mass 8.3×105 kg , continues forward at 1.3×106 m/s . Part B) What is the speed of the third piece? Assume that the initial speed of the ship is positive v^3=...
A small jet airplane has a total wing area of 67.5 m2 and a mass of...
A small jet airplane has a total wing area of 67.5 m2 and a mass of 8.03 104 kg. (a) If this jet is in horizontal flight, determine the pressure difference between the lower and upper surfaces of the wings. in Pa ? (b) When the speed of air traveling over the wing is 247 m/s, determine the speed of air under the wing. Use 1.29 kg/m3 as the density of air. in m/s ? (c) Which answer is correct...
At an altitude of 11000 m (a typical cruising altitude for a jet airliner), the air...
At an altitude of 11000 m (a typical cruising altitude for a jet airliner), the air temperature is -54.0 ∘C and the air density is 0.410 kg/m3 . What is the pressure of the atmosphere at that altitude? (Note: The temperature at this altitude is not the same as at the surface of the earth, so the equation P=P0exp(−MgyRT) doesn't apply.)
A spaceship of mass 2.30×106 kg is cruising at a speed of 4.30×106 m/s when the...
A spaceship of mass 2.30×106 kg is cruising at a speed of 4.30×106 m/s when the antimatter reactor fails, blowing the ship into three pieces. One section, having a mass of 5.20×105 kg , is blown straight backward with a speed of 2.30×106 m/s . A second piece, with mass 8.10×105 kg , continues forward at 9.00×105 m/s . a) What is the speed of the third piece?
A spaceship of mass 2.30×106 kg is cruising at a speed of 5.40×106 m/s when the...
A spaceship of mass 2.30×106 kg is cruising at a speed of 5.40×106 m/s when the antimatter reactor fails, blowing the ship into three pieces. One section, having a mass of 5.10×105 kg , is blown straight backward with a speed of 2.40×106 m/s . A second piece, with mass 8.30×105 kg , continues forward at 1.20×106 m/s . Part A What is the speed of the third piece?
An aircraft flies with a Mach number Ma1=0.921 at an altitude of 7021 m where the...
An aircraft flies with a Mach number Ma1=0.921 at an altitude of 7021 m where the pressure is 42.1 kPa and the temperature is 242.1 K. Calculate the stagnation properties (static temperature, pressure, density), cross-section areas A1 and A2=? at the inlet and outlet of the diffuser. The diffuser at the engine inlet has an exit Mach number of Ma2=0.3. For a mass flow rate of 32.1 kg/s, determine the static pressure rise across the diffuser and the exit area....