Question

What's the angle when the wavelength your looking at is 400 nm and the spacing grating...

What's the angle when the wavelength your looking at is 400 nm and the spacing grating is 2000 nm

Homework Answers

Answer #1

using diffraction equation

where n is the order of diffraction

is the wavelength

d is the spacing between grooves of a grating

substitute the given value in the above formula

n * 400 * 10-9 = 2000*10-9*Sin

n=5 Sin

therefore for different values of n , we have different angles of diffraction

for n = 1 , = 11.54 degree

for n = 2 , = 23.58 degree

for n = 3 , = 36. degree

for n = 4 , = 53.1 degree

and so on....

most prominently we see at the first order of diffraction, therefore angle = 11.54 degree.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
You have a laser with wavelength = 637.3 nm. The grating has a slit spacing of...
You have a laser with wavelength = 637.3 nm. The grating has a slit spacing of 0 mm. What is the angle measured for n=1? angle is in radians
1. You have a laser with wavelength = 638.5 nm. The grating has a slit spacing...
1. You have a laser with wavelength = 638.5 nm. The grating has a slit spacing of 0 mm. What is the angle measured for n=1? angle is in radians Use three sig. figs.; or use N/A, if not enough information is given. 2. You have a laser with wavelength (λ) 640 nm. You shine it through a diffraction grating of 400 lines per millimeter. (The diffraction grating doesn't change the wavelength, it simply changes the direction in a matter...
Light of wavelength 570 nm illuminates a diffraction grating. The second-order maximum is at angle 41.5...
Light of wavelength 570 nm illuminates a diffraction grating. The second-order maximum is at angle 41.5 degrees. How many lines per millimeter does this grating have?
A diffraction grating with spacing d = 2000 nm produces an interference pattern on a screen...
A diffraction grating with spacing d = 2000 nm produces an interference pattern on a screen at a distance of 32 cm. If the first and second maxima produced are located at y = 3 cm, and 5 cm respectively, what is the wavelength of the light? Is this light visible? What does that say about the screen in this apparatus? If the frequency of the light used in question 1 above is decreased, will the positions of the maxima...
A laser beam with wavelength λ = 550 nm hits a grating with n = 5500...
A laser beam with wavelength λ = 550 nm hits a grating with n = 5500 grooves per centimeter. Part (a) Express the grating spacing, d, in terms of n. Part (b) Calculate the numerical value of d, in centimeters. Part (c) Find the sin of the angle, θ2, at which the 2nd order maximum will be observed, in terms of d and λ. Part (d) Calculate the numerical value of θ2 in degrees.
Monochromatic light of wavelength 588 nm is incident upon a diffraction grating that contains 8500 lines...
Monochromatic light of wavelength 588 nm is incident upon a diffraction grating that contains 8500 lines spread out over a distance of 1.5 cm. a) What is the line spacing of the grating? b) At what angle does the 2nd principle maximum occur? c) If the screen is located a distance of 1.55 m from the grating, what is the linear distance on the screen that separates the central maximum with the 2nd order principle maximum?
Light with a wavelength of 540 nm is incident on a diffraction grating that has 8500...
Light with a wavelength of 540 nm is incident on a diffraction grating that has 8500 lines/cm. a) What is the spacing of the slits? b) Calculate the angles of the first two maxima.
A diffraction grating is made up of slits of width 400 nm with separation 1100 nm....
A diffraction grating is made up of slits of width 400 nm with separation 1100 nm. The grating is illuminated by monochromatic plane waves of wavelength λ = 720 nm at normal incidence. (a) How many maxima are there in the full diffraction pattern? (b) What is the angular width of a spectral line observed in the first order if the grating has 960 slits? Question 2 : A diffraction grating is made up of slits of width a with...
A diffraction grating is made up of slits of width 400 nm with separation 1100 nm....
A diffraction grating is made up of slits of width 400 nm with separation 1100 nm. The grating is illuminated by monochromatic plane waves of wavelength λ = 720 nm at normal incidence. (a) How many maxima are there in the full diffraction pattern? (b) What is the angular width of a spectral line observed in the first order if the grating has 960 slits?
Light of wavelength 600 nm shines on a diffraction grating that has 400 lines per cm....
Light of wavelength 600 nm shines on a diffraction grating that has 400 lines per cm. The light emerging from the grating hits a screen 50 cm wide so that the central maximum is exactly in the middle of the screen. Assume that the screen is 3 m from the grating. How many maxima appear on the screen? (a) 4 (b) 6 (c) 7 (d) 5 (e) 3
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT