Question

In the future, a circular space station far from any planet, moon, or star is rotating...

In the future, a circular space station far from any planet, moon, or star is rotating with constant speed in order to simulate gravity. The space station is shaped like a wheel with a radius of 500.0 m and is rotating around its middle point. (B) What is the magnitude of the angular velocity of the station if it is rotating at the speed you found in part A?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A.) Different situation now. You re out in space, on a rotating wheel-shaped space station of...
A.) Different situation now. You re out in space, on a rotating wheel-shaped space station of radius 592 m. You feel planted firmly on the floor , due to artificial gravity. The gravity you experience is Earth-normal, that is, g = 9.81 m/s^2. How fast is the space station rotating in order to produce this much artificial gravity? Express your answer in revolutions per minute (rpm). B.) Same situation as in Question 4 above; this time, the space station as...
Different situation now. You re out in space, on a rotating wheel-shaped space station of radius...
Different situation now. You re out in space, on a rotating wheel-shaped space station of radius 571 m. You feel planted firmly on the floor , due to artificial gravity. The gravity you experience is Earth-normal, that is, g = 9.81 m/s^2. How fast is the space station rotating in order to produce this much artificial gravity? Express your answer in revolutions per minute (rpm).
PART 1: You're out in space, on a rotating wheel-shaped space station of radius 688 m....
PART 1: You're out in space, on a rotating wheel-shaped space station of radius 688 m. You feel planted firmly on the floor, due to artificial gravity. The gravity you experience is Earth-normal, that is, g = 9.81 m/s^2. How fast is the space station rotating in order to produce this much artificial gravity? Express your answer in revolutions per minute (rpm). A) 1.140 rpm B) 0.119 rpm C) 82.2 rpm D) 0.684 rpm PART 2: This time, the space...
There exists a circular space station with radius 1km where the gravitational pull of the sun...
There exists a circular space station with radius 1km where the gravitational pull of the sun and earth cancel. The rotation of the station is in a way that an eart like gravity exists in the ring, which can be considered as a hoop with 1km radius. 1. Find the required constant angular velocity of the station to accomplish this? 2. An astronaut approaches the station with his cylinder craft (radius = 25m, mass=250 kg, length = 300 m), and...
A space station shaped like a giant wheel has a radius of 107 m and a...
A space station shaped like a giant wheel has a radius of 107 m and a moment of inertia of 5.21 ✕ 108 kg · m2. A crew of 150 lives on the rim, and the station is rotating so that the crew experiences an apparent acceleration of 1g. When 100 people move to the center of the station for a union meeting, the angular speed changes. What apparent acceleration is experienced by the managers remaining at the rim? Assume...
a.) Calculate the mass of a planet if the gravity (g) of the planet is 5.35...
a.) Calculate the mass of a planet if the gravity (g) of the planet is 5.35 m/sec/sec b.) Calculate the escape velocit of a satellite launched from the surface of Mars, Mass of the planet = 6.41693x1023 kg and the radius of the planet = 3.39x106 m. c.) A rotating whell requires 3 sec. to rotate 37 revolutions, it's angular velocity at the end of 3 sec is 98 rad/sec calulate constant angulat acceleration of the wheel in rads/sec/sec d.)...
A space station orbits the Earth. The station is formed like a bicycle wheel with a...
A space station orbits the Earth. The station is formed like a bicycle wheel with a rim and hallways connected to a central hub. The station rotates around the central hub to provide a centripetal acceleration along the outer rim to serve in place of the Earth’s gravity. Suppose the station is inhabited by 10 people of equal mass. At the moment, there are 5 people in the central hub and 5 along the outer rim. Then two people move...
A planet has a circular orbit around a star of mass M. However, the star just...
A planet has a circular orbit around a star of mass M. However, the star just explodes, projecting its outer envelope at a much greater speed than that of the planet in orbit. Its lost mass can, therefore, be considered as having been lost instantaneously. What remains of the star has a mass M ', always greater than that of the planet. What is the eccentricity of the planet's orbit after the explosion? You can neglect the force exerted on...
In the distant future, space explorers from earth discover a new planet. They can measure the...
In the distant future, space explorers from earth discover a new planet. They can measure the radius of the planet to be 7350 km, but they want to know its mass. They observe what the planet has a moon in a circular orbit 32,800 km above the surface of the planet. The moons orbit speed is 3.9 1 km/s. A) find the mass of the planet B) how much would a 65 kg person weigh on the surface of this...
A circular space station (shaped like a big wheel) rotates 110 times in one hour. The...
A circular space station (shaped like a big wheel) rotates 110 times in one hour. The apparent weight of an astronaut standing on the inside surface of the outer wall is equal to her weight on earth. How far from the axis of rotation is the inside surface of the station’s outer wall? Give the numerical value in meters.