Question

a Sprng is compressed by 5 cm from quilibirum with a hollow baseball (mass= .09kg). after...

a Sprng is compressed by 5 cm from quilibirum with a hollow baseball (mass= .09kg). after releaze the boll rolls without slipping or sliding on the track to height h.

a) find totl kinetic energy in SI units of ball after it passess equilibrium.

b) what hiehgt will ball reach when it comes to a stop?

Homework Answers

Answer #1

Let us assume spring constant of our given spring is k.

Spring constant = K N /m

Compression = 5cm=0.05meter

Mass = 0.09kg

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A hollow sphere (mass 8.8 kg, radius 54.8 cm) is rolling without slipping along a horizontal...
A hollow sphere (mass 8.8 kg, radius 54.8 cm) is rolling without slipping along a horizontal surface, so its center of mass is moving at speed vo. It now comes to an incline that makes an angle 56o with the horizontal, and it rolls without slipping up the incline until it comes to a complete stop. Find a, the magnitude of the linear acceleration of the ball as it travels up the incline, in m/s2.
A hollow sphere (mass M, radius R) starts from rest at the top of a hill...
A hollow sphere (mass M, radius R) starts from rest at the top of a hill of height H. It rolls down the hill without slipping. Find an expression for the speed of the ball's center of mass once it reaches the bottom of the hill.
A uniform solid marble, of mass m = 20.0 g and diameter 1.00 cm, rolls without...
A uniform solid marble, of mass m = 20.0 g and diameter 1.00 cm, rolls without sliding down a large symmetric steel bowl, starting from rest at point A, at the top of the left(no-slip) side. The top of each side is a distance h = 15.0 cm above the bottom of the bowl. The left half of the bowl is rough enough to cause the marble to roll without slipping, but the right half of the bowl is frictionless...
A hollow cylinder, a solid cylinder, and a billiard ball are all released at the top...
A hollow cylinder, a solid cylinder, and a billiard ball are all released at the top of a ramp and roll to the bottom without slipping. PART A Rank them according to the fraction of the kinetic energy that is rotational as they roll. billiard ball/ solid cylinder/ hollow cylinder PART B What are the ratios of speeds of a hollow and a solid cylinders when they reach the bottom of the ramp? PART C What are the ratios of...
A bowling ball of mass 7.23 kg and radius 10.3 cm rolls without slipping down a lane at 2.90 m/s . Calculate...
A bowling ball of mass 7.23 kg and radius 10.3 cm rolls without slipping down a lane at 2.90 m/s . Calculate its total kinetic energy. Express your answer using three significant figures and include the appropriate units
A hollow ball of mass 6.00 kg and radius 0.180 m is rolled up a hill...
A hollow ball of mass 6.00 kg and radius 0.180 m is rolled up a hill without slipping. If it starts off at the bottom with a linear speed of 7.00 m/s, what vertical height (in m) will it reach?
A tennis ball is a hollow sphere with a thin wall. It is set rolling without...
A tennis ball is a hollow sphere with a thin wall. It is set rolling without slipping at 4.10 m/s on a horizontal section of a track as shown in the figure below. It rolls around the inside of a vertical circular loop of radius r = 48.1 cm. As the ball nears the bottom of the loop, the shape of the track deviates from a perfect circle so that the ball leaves the track at a point h =...
A ball rolls down a ramp without slipping. It starts from rest. (a) Specify the mass...
A ball rolls down a ramp without slipping. It starts from rest. (a) Specify the mass and radius of the ball, and the height and length of the ramp. (b) Calculate the moment of inertia of the ball . (c) Calculate the potential energy of the ball at the top of the ramp. (d) Calculate the linear kinetic energy and rotational kinetic energy of the ball. (e) Determine the angular acceleration of the ball. (f) Determine how long the ball...
A Brunswick bowling ball with mass M= 7kg and radius R=0.15m rolls from rest down a...
A Brunswick bowling ball with mass M= 7kg and radius R=0.15m rolls from rest down a ramp without slipping. The initial height of the incline is H= 2m. The moment of inertia of the ball is I=(2/5)MR2 What is the total kinetic energy of the bowling ball at the bottom of the incline? 684J 342J 235J 137J If the speed of the bowling ball at the bottom of the incline is V=5m/s, what is the rotational speed ω at the...
When a spring is compressed... The potential energy is a minimum and kinetic energy is at...
When a spring is compressed... The potential energy is a minimum and kinetic energy is at a minimum. The potential energy is at a minimum and kinetic energy is at a maximum. The potential energy is at a maximum and kinetic energy is at a minimum. The potential energy is at a maximum and kinetic energy is at a maximum. A ball mass 6 g is placed in front of a spring compressed by 7.21 cm. Right after launch, the...