Question

1. A beam of protons of energy 3.75 MeV is incident on a barrier of height...

1. A beam of protons of energy 3.75 MeV is incident on a barrier of height 18.00 MeV and
thickness 1.65 fm (1.65 x 10^ -15 m). (a) What is the probability of the protons tunneling through the barrier?
(b) By what factor does the probability change if the barrier thickness is doubled ?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A beam of protons, each with energy E=20 MeV, is incident on a potential step 40...
A beam of protons, each with energy E=20 MeV, is incident on a potential step 40 MeV high. Graph using a computer the relative probability of finding protons at values of x > 0 from x = 0 to x = 5 fm. Please do not just copy the answer to this question that has been posted on Chegg all ready
Suppose a beam of 4.00 eV protons strikes a potential energy barrier of height 6.20 eV...
Suppose a beam of 4.00 eV protons strikes a potential energy barrier of height 6.20 eV and thickness 0.560 nm, at a rate equivalent to a current of 1150 A. (a) How many years would you have to wait (on average) for one proton to be transmitted through the barrier? (b) How long would you have to wait if the beam consisted of electrons rather than protons?
Suppose a beam of 5.10 eV protons strikes a potential energy barrier of height 5.80 eV...
Suppose a beam of 5.10 eV protons strikes a potential energy barrier of height 5.80 eV and thickness 0.810 nm, at a rate equivalent to a current of 980 A. (a) How many years would you have to wait (on average) for one proton to be transmitted through the barrier? (b) How long would you have to wait if the beam consisted of electrons rather than protons?
Suppose a beam of 4.60 eV protons strikes a potential energy barrier of height 6.10 eV...
Suppose a beam of 4.60 eV protons strikes a potential energy barrier of height 6.10 eV and thickness 0.530 nm, at a rate equivalent to a current of 1190 A. (a) How many years would you have to wait (on average) for one proton to be transmitted through the barrier? (b) How long would you have to wait if the beam consisted of electrons rather than protons?
Suppose a beam of 5.10 eV protons strikes a potential energy barrier of height 6.00 eV...
Suppose a beam of 5.10 eV protons strikes a potential energy barrier of height 6.00 eV and thickness 0.840 nm, at a rate equivalent to a current of 860 A. (a) How many years would you have to wait (on average) for one proton to be transmitted through the barrier? (b) How long would you have to wait if the beam consisted of electrons rather than protons?
A proton and a deuteron (which has the same charge as the proton but 2.0 times...
A proton and a deuteron (which has the same charge as the proton but 2.0 times the mass) are incident on a barrier of thickness 10.5 fm and “height” 11.1 MeV. Each particle has a kinetic energy of 2.80 MeV. a.) Which particle has the higher probability of tunneling through the barrier?    a. Photon    b. none of them will pass through the   barrier    c. both have same probability b. What is the ratio of the tunneling probability...
A beam of 1,000,000 electrons, each with kinetic energy E = 1.0 eV, is incident on...
A beam of 1,000,000 electrons, each with kinetic energy E = 1.0 eV, is incident on a potential barrier with the height V0 = 7.0 eV. (a) How many electrons in the beam will be transmitted through the barrier if the barrier width a = 0.25 nm? (b) Answer the same question if the width is doubled, that is, a = 0.5 nm. (c) Briefly explain the effect of the barrier width in quantum tunneling, based on your results in...
An electron beam with energy 0.1 eV is incident on a potential barrier with energy 10...
An electron beam with energy 0.1 eV is incident on a potential barrier with energy 10 eV and width 20 ˚A. Choose the variant that you think best describes the probability of finding an electron on the other side of the barrier: a) 0; b) <10%; c) 100% d) 200%.
An electron with an energy of 5.5 eV approaches a potential barrier of height 6.1 eV...
An electron with an energy of 5.5 eV approaches a potential barrier of height 6.1 eV and thickness of 1nm. What is the relative probability that the electron passes through the barrier? What barrier height should be used to decrease the relative probability by a factor of 100?
Consider an incident beam of 10^4, 2.4 MeV photons on a block of carbon of thickness...
Consider an incident beam of 10^4, 2.4 MeV photons on a block of carbon of thickness 3 × 10^23electrons/cm^2(or 5 × 10^22atoms/cm^2). A. The primary interaction between the photon beam and the block of carbon is Compton scattering. What is one way you could determine this? State a useful coefficient for this interaction. B. What is the number of Compton interactions? C. How much energy is diverted from the incident beam? D. Calculate the energy transferred to the kinetic energy...