Question

A -150 μC charge moves with a velocity ?. If a magnetic field of 0.48 T...

A -150 μC charge moves with a velocity ?. If a magnetic field of 0.48 T westward produce a southward force of 1.5 m N. Calculate the magnitude and direction of the charge’s velocity.

Homework Answers

Answer #1

magnitude of force = qVB

where q = charge , V = velocity , B = magnetic field

0.0015 = 150*10^-6*V*0.48

V = 20.83 m/s

so magnitude of velocity is 20.83 m/s

The direction of magnetic force is determined by Fleming's right hand rule which states that the direction of the magnetic force on a positive moving charge,point the thumb of the right hand in the direction of v, the fingers in the direction of B, and a perpendicular to the palm points in the direction of F.

so the direction of velocity will be inside the page

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A particle that has an 8.1-μC charge moves with a velocity of magnitude 3 × 105...
A particle that has an 8.1-μC charge moves with a velocity of magnitude 3 × 105 m/s along the +x axis. It experiences no magnetic force, although there is a magnetic field present. The maximum possible magnetic force that the charge with the given speed could experience has a magnitude of 0.470 N. Find the magnitude and direction of the magnetic field. Note that there are two possible answers for the direction of the field. I seem to be getting...
A 6.60 −μC particle moves through a region of space where an electric field of magnitude...
A 6.60 −μC particle moves through a region of space where an electric field of magnitude 1250 N/C points in the positive x direction, and a magnetic field of magnitude 1.01 T points in the positive z direction. 1. If the net force acting on the particle is 6.25×10^−3 N in the positive x direction, find the components of the particle's velocity. Assume the particle's velocity is in the x-y plane. vx, vy, vz =   m/s  
A 6.70 −μC particle moves through a region of space where an electric field of magnitude...
A 6.70 −μC particle moves through a region of space where an electric field of magnitude 1200 N/C points in the positive x direction, and a magnetic field of magnitude 1.25 T points in the positive z direction. If the net force acting on the particle is 6.21×10−3 N in the positive xx direction, find the components of the particle's velocity. Assume the particle's velocity is in the x-y plane. vx, vy, vz =   answer is 0,219,0 m/s why is...
A 6.70 −μC particle moves through a region of space where an electric field of magnitude...
A 6.70 −μC particle moves through a region of space where an electric field of magnitude 1250 N/C points in the positive x direction, and a magnetic field of magnitude 1.03 T points in the positive z direction. .If the net force acting on the particle is 6.22×10−3 N in the positive x direction, find the components of the particle's velocity. Assume the particle's velocity is in the x-y plane?
A 6.70 −μC particle moves through a region of space where an electric field of magnitude...
A 6.70 −μC particle moves through a region of space where an electric field of magnitude 1450 N/C points in the positive x direction, and a magnetic field of magnitude 1.23 T points in the positive z direction. If the net force acting on the particle is 6.25×10−3 N in the positive x direction, find the components of the particle's velocity. Assume the particle's velocity is in the x-y plane.
A particle that has an 8.9-µC charge moves with a velocity of magnitude 3.0 105 m/s...
A particle that has an 8.9-µC charge moves with a velocity of magnitude 3.0 105 m/s along the +x axis. It experiences no magnetic force, although there is a magnetic field present. The maximum possible magnetic force that the charge with the given speed could experience has a magnitude of 0.43 N. Find the magnitude and direction of the magnetic field. Note that there are two possible answers for the direction of the field.
A 6.70 −μC particle moves through a region of space where an electric field of magnitude...
A 6.70 −μC particle moves through a region of space where an electric field of magnitude 1500 N/C points in the positive x direction, and a magnetic field of magnitude 1.25 T points in the positive z direction. A)If the net force acting on the particle is 6.21×10−3 N in the positive x direction, find the components of the particle's velocity. Assume the particle's velocity is in the x-y plane. Enter your answers numerically separated by commas.
A 6.70 −μC particle moves through a region of space where an electric field of magnitude...
A 6.70 −μC particle moves through a region of space where an electric field of magnitude 1200 N/C points in the positive x direction, and a magnetic field of magnitude 1.25 T points in the positive z direction. If the net force acting on the particle is 6.24×10−3 N in the positive x direction, find the components of the particle's velocity. Assume the particle's velocity is in the x-y plane Find all three components and enter in Vx, Vy, Vz...
A 6.50 −μC particle moves through a region of space where an electric field of magnitude...
A 6.50 −μC particle moves through a region of space where an electric field of magnitude 1400 N/C points in the positive x direction, and a magnetic field of magnitude 1.24 Tpoints in the positive z direction. If the net force acting on the particle is 6.21×10−3 N in the positive x direction, find the components of the particle's velocity. Assume the particle's velocity is in the x-y plane. Find vx,vy,vz
A particle with a charge of 37 μC moves with a speed of 77 m/s in...
A particle with a charge of 37 μC moves with a speed of 77 m/s in the positive x direction. The magnetic field in this region of space has a component of 0.42 T in the positive y direction, and a component of 0.87 T in the positive z direction. Part A: What is the magnitude of the magnetic force on the particle? Express your answer using two significant figures. Part B: What is the direction of the magnetic force...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT