Question

A long solenoid is used as an inductor in an R-L circuit. The solenoid has 165/m...

A long solenoid is used as an inductor in an R-L circuit. The solenoid has 165/m and a cross-sectional radius of 0.14 meters. It is placed into a R-L circuit with a 18 Ohm resistor and a battery initially. The battery is removed, the initial current is 3 amps, and 8 milli-seconds after the battery has been removed, the voltage across the inductor is 7 volts. What is the length of the solenoid in meters?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
part A A solenoid with 44 x 103 turns per meter, a cross sectional radius of...
part A A solenoid with 44 x 103 turns per meter, a cross sectional radius of 0.5 m, and a length of 0.2 meters is used as to form an inductor. Then a 8 x 103 volt battery (DC) is connected in series to this inductor, a resistor of 2 kilo-Ohms, and another resistor of 8 kilo-Ohms. After 14 milli-seconds, what is the power output of the battery in kilo-watts? part Aa. A battery (DC battery) is connected in series...
A battery (DC battery) is connected in series to a 13 milli-henrie inductor and a 6...
A battery (DC battery) is connected in series to a 13 milli-henrie inductor and a 6 Ohm resistor. After 6 milli-seconds, the battery is disconnected. 3 milli-seconds after the battery has been disconnected, the current in the circuit is 2.3 amps. What was the voltage of the battery that was disconnected in volts?
4) A battery (DC battery) is connected in series to a 14 milli-henrie inductor and a...
4) A battery (DC battery) is connected in series to a 14 milli-henrie inductor and a 4 Ohm resistor. After 6 milli-seconds, the battery is disconnected. 5 milli-seconds after the battery has been disconnected, the current in the circuit is 3.8 amps. What was the voltage of the battery that was disconnected in volts?
A solenoid with 45 x 103 turns per meter, a cross sectional radius of 0.4 m,...
A solenoid with 45 x 103 turns per meter, a cross sectional radius of 0.4 m, and a length of 0.2 meters is used as to form an inductor. Then a 9 x 103 volt battery (DC) is connected in series to this inductor, a resistor of 6 kilo-Ohms, and another resistor of 7 kilo-Ohms. After 12 milli-seconds, what is the power output of the battery in kilo-watts?
A solenoid with 39 x 103 turns per meter, a cross sectional radius of 0.3 m,...
A solenoid with 39 x 103 turns per meter, a cross sectional radius of 0.3 m, and a length of 0.3 meters is used as to form an inductor. Then a 5 x 103 volt battery (DC) is connected in series to this inductor, a resistor of 6 kilo-Ohms, and another resistor of 6 kilo-Ohms. After 14 milli-seconds, what is the power output of the battery in kilo-watts?
A solenoid with 29 x 10^3 turns per meter, a cross sectional radius of 0.5 m,...
A solenoid with 29 x 10^3 turns per meter, a cross sectional radius of 0.5 m, and a length of 0.3 meters is used as to form an inductor. Then a 8 x 10^3 volt battery (DC) is connected in series to this inductor, a resistor of 4 kilo-Ohms, and another resistor of 4 kilo-Ohms. After 11 milli-seconds, what is the power output of the battery in kilo-watts?
3) A solenoid with 44 x 103 turns per meter, a cross sectional radius of 0.5...
3) A solenoid with 44 x 103 turns per meter, a cross sectional radius of 0.5 m, and a length of 0.2 meters is used as to form an inductor. Then a 9 x 103 volt battery (DC) is connected in series to this inductor, a resistor of 4 kilo-Ohms, and another resistor of 6 kilo-Ohms. After 14 milli-seconds, what is the power output of the battery in kilo-watts?
3) A solenoid with 31 x 103 turns per meter, a cross sectional radius of 0.4...
3) A solenoid with 31 x 103 turns per meter, a cross sectional radius of 0.4 m, and a length of 0.2 meters is used as to form an inductor. Then a 9 x 103 volt battery (DC) is connected in series to this inductor, a resistor of 3 kilo-Ohms, and another resistor of 7 kilo-Ohms. After 13 milli-seconds, what is the power output of the battery in kilo-watts?
5. You have a solenoid-shaped inductor.It is connected to a circuit with an alternating current supply....
5. You have a solenoid-shaped inductor.It is connected to a circuit with an alternating current supply. At a particular moment, the current in the circuit is 1.5 Amps and is decreasing by 0.4 Amps/sec. The inductor has a resistance of 3 Ohms. (20 points) (a) If the inductor stores 0.855 J of energy at this moment, what is its inductance? (b) What is the voltage difference measured across the inductor at this moment? (c) If the radius of the coils...
A solenoid with inductance L = 2.0 H is connected in series with a resistor R...
A solenoid with inductance L = 2.0 H is connected in series with a resistor R = 10 ohms, as well as an AC power supply that is providing current I(t) = I0 * cos( 2π * f * t ). The current has an amplitude of 2 A and a frequency of 60 Hz. a) Draw a diagram of the circuit. b) At time t = 0 seconds, what is the change in voltage across both the inductor and...