Question

A slab of current is infinitely long in the y direction. In the z direction, the...

A slab of current is infinitely long in the y direction. In the z direction, the slab extends from z = -D to z = +D. The current through the slab is J ?=-k(D^2-z^2)x ?. Find the magnetic field both inside and outside the slab.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An infinitely long wire carrying a current of 4.5 A is bent at the origin and...
An infinitely long wire carrying a current of 4.5 A is bent at the origin and extends in both the y-direction and x-direction. (In other words, the wire makes a 90 degree angle with the x axis and y axis and has a bend at the origin) Find the magnetic field at the point x = 3 cm and y = 2 cm
An infinitely long wire carrying a current of 4.5 A is bent at the origin and...
An infinitely long wire carrying a current of 4.5 A is bent at the origin and extends in both the y-direction and x-direction. (In other words, the wire makes a 90 degree angle with the x axis and y axis and has a bend at the origin) Find the magnetic field at the point x = 3 cm and y = 2 cm.
A slab of thickness 2a, extending to infinity in x and y directions but contained within...
A slab of thickness 2a, extending to infinity in x and y directions but contained within –a < z < a, carries a non-uniform current with current density J = J0 · z^2 /a^2 pointing into the page where the y axis faces out of the page. Use Ampere’s Law to find the magnetic field B inside and outside of the slab.
Solid cylindrical wire of infinitely length has radius R. I, a current, is flowing in the...
Solid cylindrical wire of infinitely length has radius R. I, a current, is flowing in the z direction. Through the cross section of the wire, the current flow is uniformly distributed. 1. Find the current density vector J in the wire. Show your steps and be clear on the formulas. 2. What's the magnitude of the magnetic field at points outside the wire? Use Ampere’s Law. 3. What's the magnitude of the magnetic field at points inside the wire? Again,...
An infinitely long solid cylindrical cable (radius R, centered on the z-axis) carries a volume current...
An infinitely long solid cylindrical cable (radius R, centered on the z-axis) carries a volume current ?⃗ = (??^5) ?̂, The cable is surrounded by a concentric, infinitely long solenoid (radius 3R, n turns /m) carrying a current ?0. a. Find expressions for the magnetic field in all regions of space. b. Graph the field as a function of position along the x-axis. c. Find the force on a segment of wire from (x = 4R, y = 0, z...
An infinitely long solid cylindrical cable (radius R, centered on the z-axis) carries a volume current...
An infinitely long solid cylindrical cable (radius R, centered on the z-axis) carries a volume current ?⃗ = (??^5) ?̂, The cable is surrounded by a concentric, infinitely long solenoid (radius 3R, n turns /m) carrying a current ?0. a. Find expressions for the magnetic field in all regions of space. b. Graph the field as a function of position along the x-axis. c. Find the force on a segment of wire from (x = 4R, y = 0, z...
If you have a thick slab in the xy-plane, extending from z = − a to...
If you have a thick slab in the xy-plane, extending from z = − a to z = +a in the z -direction, carries a uniform volume current J= Jx̂ . Get the magnitude and the direction of the magnetic field everywhere as a function of z . Then assume that the slab is made of a magnetic media with permeability μ .       2. Get the magnitude and the direction of the magnetic field everywhere       3. Get the...
An infinitely long cylinder of radius a oriented along the z-axis has uniform magnetization M =...
An infinitely long cylinder of radius a oriented along the z-axis has uniform magnetization M = M?. Determine a) the volume magnetization current Jm, b) the surface magnetization current Jms, c) the B-field inside and outside the cylinder, and d) the H-field inside and outside the cylinder.
Find the magnetic field of an infinitely long-current carrying wire with current I = A cos(wt)...
Find the magnetic field of an infinitely long-current carrying wire with current I = A cos(wt) in the +x direction with w > 0 but small and constant and A > 0 constant.
A long cylindrical wire of radius R, made from a linear material with a magnetic susceptibility...
A long cylindrical wire of radius R, made from a linear material with a magnetic susceptibility of Xm , carries a volume current density J = ks ẑ along the z-axis. For all below please include magnitude and direction: (a) Find the auxiliary field H, the magnetic field B, and the magnetization M inside the wire (b) Find the auxiliary field H, the magnetic field B, and the magnetization M outside the wire (c) Find the bound current densities Jb...