Question

For the free surface elevation η = A cos(kx − ωt) and associated velocity potential φ...

For the free surface elevation η = A cos(kx − ωt) and associated velocity potential φ = B sin(kx − ωt) cosh k(z + H), use the linearized free surface boundary conditions

∂φ/∂z=∂η/∂t at z=0

∂φ/∂t=−gη at z=0

to find:

(a) The relationship between A and B.

(b) The dispersion relationship.

Homework Answers

Answer #1

Given
   
And
  
And so,
   
  
And

And the first condition gives, at z = 0, we have
  
  
    .....................(1)
And the 2nd condition implies, at z = 0, we have

   
      ......................(2)

Equations (1) and (2) are the relationships between A and B.
b)
From equation (1)
  
And from equation (2)
  
And so,
     
  
   
  
This is the dispersion relationship.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Identify the surface with parametrization x = 3 cos θ sin φ, y = 3 sin...
Identify the surface with parametrization x = 3 cos θ sin φ, y = 3 sin θ sin φ, z = cos φ where 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π. Hint: Find an equation of the form F(x, y, z) = 0 for this surface by eliminating θ and φ from the equations above. (b) Calculate a parametrization for the tangent plane to the surface at (θ, φ) = (π/3, π/4).
Show that x(t) =c1cosωt+c2sinωt, (1) x(t) =Asin (ωt+φ), (2)   and x(t) =Bcos (ωt+ψ)   (3) are all...
Show that x(t) =c1cosωt+c2sinωt, (1) x(t) =Asin (ωt+φ), (2)   and x(t) =Bcos (ωt+ψ)   (3) are all solutions of the differential equation d2x(t)dt2+ω2x(t) = 0. Show that thethree solutions are identical. (Hint: Use the trigonometric identities sin (α+β) =sinαcosβ+ cosαsinβand cos (α+β) = cosαcosβ−sinαsinβto rewriteEqs. (2) and (3) in the form of Eq. (1). To get full marks, you need to show the connection between the three sets of parameters: (c1,c2), (A,φ), and (B,ψ).) From Quantum chemistry By McQuarrie
Air at freestream velocity U∞=16 ms, and free steam temperature      T∞=50℃ is flowing over a plate...
Air at freestream velocity U∞=16 ms, and free steam temperature      T∞=50℃ is flowing over a plate surface that is at temperature Ts=100℃. The velocity and thermal boundary layers developing on the surface have been shown in the figure. Also shown are the tangents to the velocity and temperature profiles at the surface y=0. If the density of air is ρ∞=1.1 kgm3, viscosity μ=1.963×10-5kgm∙s, and thermal conductivity k=0.0274Wm∙K then, calculate (a)        the wall shear stress, τw (b)       coefficient of skin friction,...
Q2a) Show that the potential at the surface of a uniformly charged sphere of radius R...
Q2a) Show that the potential at the surface of a uniformly charged sphere of radius R is V=Kq/R where K = 1/4πɛ₀ and the zero of potential is at infinity). Hence derive an expression for the potential energy of the sphere. (Hint, assemble the sphere from the charges at infinity) b) A parallel plate capacitor has conducting plates, each of area A, situated at y=0 and y=d. two parallel dielectric sheets occupy the space between the plates. Dielectric of relative...
Part I. Indicate whether true or false (T or F). ____ Storm water detention ponds typically...
Part I. Indicate whether true or false (T or F). ____ Storm water detention ponds typically are designed to regulate the outflow peak rate at or below a single target value, such as the pre-development (pre-land use change) peak runoff rate for a specified return period event. Detention storage alters the peak but not the volume of the outflow hydrograph. _____ Typical rating curves for weirs are concave upward. Typical rating curves for orifices are concave downward. ____ A sediment...