Question

A 421 gram blcok is dropped onto a relaxed vertical spring that has a spring constant...

A 421 gram blcok is dropped onto a relaxed vertical spring that has a spring constant of k=246 N/m. The block becomes attached to the spring and compresses the spring 11.1 cm before momentarily stopping. From how high above the spring is the block dropped?

Homework Answers

Answer #1

I will be glad to see your comment if you have any question and thumb up if you are satisfied. Thanks...

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 100 g block is dropped onto a relaxed vertical spring that has a spring constant...
A 100 g block is dropped onto a relaxed vertical spring that has a spring constant of k = 3.6 N/cm (see the figure). The block becomes attached to the spring and compresses the spring 18 cm before momentarily stopping. While the spring is being compressed, what work is done on the block by (a) the gravitational force on it and (b) the spring force? (c) What is the speed of the block just before it hits the spring? (Assume...
A 210 g block is dropped onto a relaxed vertical spring that has a spring constant...
A 210 g block is dropped onto a relaxed vertical spring that has a spring constant of k = 3.0 N/cm (see the figure). The block becomes attached to the spring and compresses the spring 17 cm before momentarily stopping. While the spring is being compressed, what work is done on the block by (a) the gravitational force on it and (b) the spring force? (c) What is the speed of the block just before it hits the spring? (Assume...
A 250 g block is dropped onto a relaxed vertical spring that has a spring constant...
A 250 g block is dropped onto a relaxed vertical spring that has a spring constant of k = 2.5 N/cm is shown in figure below. The block becomes attached to the spring and compresses the spring 12 cm before momentarily stopping. While the spring is being compressed, what work is done on the block by (a) the gravitational force on it and (b) the spring force? (c) What is the speed of the block just before it hits the...
A 220 g stone is dropped onto a relaxed vertical spring that has a spring constant...
A 220 g stone is dropped onto a relaxed vertical spring that has a spring constant of k = 4.5 N/cm. The stone becomes attached to the spring and compresses the spring 17 cm before momentarily stopping. While the spring is being compressed, what work is done on the stone by (a) the gravitational force on it and (b) the spring force? (c) What is the speed of the stone just before it hits the spring? (Assume no friction) (d)...
A 350-g block is dropped onto a vertical spring with spring constant k =110.0 N/m. The...
A 350-g block is dropped onto a vertical spring with spring constant k =110.0 N/m. The block becomes attached to the spring, and the spring compresses 50.6 cm before momentarily stopping. The speed just before the block hits the spring is 8.4 m/s. The work done by the spring force is -14.1J. The work done by weight is 1.74 J. If the speed at impact is doubled, what is the maximum compression of the spring
A 725 g block is dropped onto a vertical spring with spring constant k = 240...
A 725 g block is dropped onto a vertical spring with spring constant k = 240 N/m. The block becomes attached to the spring, and the spring compresses 35.7 cm before momentarily stopping. a)While the spring is being compressed, what work is done on the block by its weight? b)While the spring is being compressed, what work is done on the block by the spring force? c)What is the speed of the block just before it hits the spring?(Assume that...
A 0.16 kg ball is dropped from rest onto a spring with spring constant 42 N/m,...
A 0.16 kg ball is dropped from rest onto a spring with spring constant 42 N/m, as shown. If it compresses the spring by a distance y = 0.19 m before coming to rest, from what height above the spring was it dropped? Ignore air resistance and friction. A.0.04 m B. 0.48 m C. 0.17 m D. 0.29 m
A 1.39 kg object is held 1.29 m above a relaxed, massless vertical spring with a...
A 1.39 kg object is held 1.29 m above a relaxed, massless vertical spring with a force constant of 294 N/m. The object is dropped onto the spring. (a) How far does the object compress the spring? (b) Repeat part (a), but now assume that a constant air-resistance force of 0.768 N acts on the object during its motion. (c) How far does the object compress the spring if the same experiment is performed on the moon, where g =...
A 1.60 kg object is held 1.10 m above a relaxed, massless vertical spring with a...
A 1.60 kg object is held 1.10 m above a relaxed, massless vertical spring with a force constant of 330 N/m. The object is dropped onto the spring. (a) How far does the object compress the spring? m (b) Repeat part (a), but now assume that a constant air-resistance force of 0.650 N acts on the object during its motion. m (c) How far does the object compress the spring if the same experiment is performed on the moon, where...
1.34 kg object is held 1.49 m above a relaxed, massless vertical spring with a force...
1.34 kg object is held 1.49 m above a relaxed, massless vertical spring with a force constant of 309 N/m. The object is dropped onto the spring. (a) How far does the object compress the spring? (b) Repeat part (a), but now assume that a constant air-resistance force of 0.720 N acts on the object during its motion. (c) How far does the object compress the spring if the same experiment is performed on the moon, where g = 1.63...