Question

A 5.0 kg bowling ball traveling 3.0 m/s collides with an 8.0 kg stationary bowling ball....

A 5.0 kg bowling ball traveling 3.0 m/s collides with an 8.0 kg stationary bowling ball. After the collision the 5.0 kg ball is deflected to the left from its original path by 30 degrees, while the 8.0 kg ball is deflected to the right at an angle of 45 degrees. What are the speeds of the two balls after the impact?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Question1) A car moving North at 12 m/s strikes a stationary car of equal mass. The...
Question1) A car moving North at 12 m/s strikes a stationary car of equal mass. The first car moves off after the collision at an angle of 30° East of North with a speed of 8.0 m/s. a.   What is the velocity of the struck car just after the collision? b.   Show that the collision is inelastic. c.   Explain how dents, skid marks, etc. show that kinetic energy has been lost. d.   If the collision were perfectly elastic, what would...
A 6.85 kg bowling ball moving at 10.0 m/s collides with a 1.60 kg bowling pin,...
A 6.85 kg bowling ball moving at 10.0 m/s collides with a 1.60 kg bowling pin, scattering it with a speed of 8.00 m/s and at an angle of 32.0° with respect to the initial direction of the bowling ball. ( a) Calculate the final velocity (magnitude in m/s and direction in degrees counterclockwise from the original direction) of the bowling ball. ______magnitude m/s __________direction ° counterclockwise from the original direction of the bowling ball (b) Ignoring rotation, what was...
A ball with mass M = 5 kg is moving with speed V=10 m/s and collides...
A ball with mass M = 5 kg is moving with speed V=10 m/s and collides with another ball with mass m = 2.5 kg which is initially stationary. There is no other force such as gravity acting on the two balls. After the collision, both balls move at angle θ=30 degrees relative to initial direction of motion of the ball with mass M = 5 kg. a) What are the speeds of the two balls after the collision? b)...
A ball (mass = 0.7 kg) traveling at 5 m/s toward a second ball (mass =...
A ball (mass = 0.7 kg) traveling at 5 m/s toward a second ball (mass = 0.25 kg) at rest. After collision, the 0.7 kg ball travels 29 degrees to the left of its original path, and the 0.25 kg ball travels at 34 degrees to the right of its original path. What are the final velocities of each ball after collision?
A 5.0-kg mass moving at 8.0 m/s collides head-on with a 3.0-kg mass initially at rest...
A 5.0-kg mass moving at 8.0 m/s collides head-on with a 3.0-kg mass initially at rest If the collision is perfectly elastic, what is the speed of the masses just after the collision? Is the kinetic energy conserved?
A bowling ball with a mass of 4.0 kilograms is traveling at 8.0 m/s strikes a...
A bowling ball with a mass of 4.0 kilograms is traveling at 8.0 m/s strikes a larger bowling ball with a mass 6.0 kilograms which is at rest. After the collision, the smaller ball moves at an unknown velocity 30.0 degrees above the x-axis and the larger ball moves at an unknown velocity 13.0 degrees below the x-axis. What are the final velocities of each ball?
A billiards ball of mass 0.2 kg strikes, another initially stationary ball of the same mass....
A billiards ball of mass 0.2 kg strikes, another initially stationary ball of the same mass. The first ball is deflected and travels at an angle of 60o with its original direction. Its initial speed was 5.0 m/s and after the collision, it is 3.0 m/s. What are the magnitude and direction of velocity of the second ball after collision?
A billiard ball (m=0.17 kg) traveling at 3.25 m/s collides with an identical billiard ball at...
A billiard ball (m=0.17 kg) traveling at 3.25 m/s collides with an identical billiard ball at rest. After the collision, the first ball travels at 1.87 m/s at an angle of 23 degrees from the positive x-axis. What is (a) the speed and (b) the angle of the second ball?
A 1.5 kg metal ball moving east at 50 m/s collides with a stationary wooden sphere....
A 1.5 kg metal ball moving east at 50 m/s collides with a stationary wooden sphere. The ball rebounds at an angle of 45° north of east and the wooden sphere leaves at 10.0 m/s and at an angle of 30° south of east. What is the mass of the wooden sphere and what is the speed of the metal ball after the collision?
A 5.5 kg bowling ball moving at 9.55 m/s collides with a 0.875kg bowling pin, which...
A 5.5 kg bowling ball moving at 9.55 m/s collides with a 0.875kg bowling pin, which is scattered at an angle of theta = 84.5 degrees from the initial direction of the bowling ball, with a speed of 17m/s a) calculate the direction, in degrees, of the final velocity of the bowling ball. This angle should be measured in the same way that theta is. b) calculate the magnitude of the final velocity, in meters per second, of the bowling...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT