Question

You look down on a spinning disk with mass M and radius R. recall a disk...

You look down on a spinning disk with mass M and radius R. recall a disk has moment of inertial (1/2)MR^2. The disk is spinning on a frictionlessly (supported on a perfect air hockey table). The disk is spinning at 21.00rad/s. A hoop (at rest--not spinning) with the same mass and same radius is centered over the disk and dropped on the disk --- where the hoop sticks to the disk. What is the final angular speed (in Rad/s) of the disk and joop together after the rotationally ineleasic collision?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A uniform disk of mass M and radius R is initially rotating freely about its central...
A uniform disk of mass M and radius R is initially rotating freely about its central axis with an angular speed of ω, and a piece of clay of mass m is thrown toward the rim of the disk with a velocity v, tangent to the rim of the disk as shown. The clay sticks to the rim of the disk, and the disk stops rotating. 33. What is the magnitude of the total angular momentum of the clay-disk system...
A disk of mass M is spinning freely at 4.67 rad/s when a second identical disk,...
A disk of mass M is spinning freely at 4.67 rad/s when a second identical disk, initially not spinning, is dropped onto it so that their axes coincide. In a short time the two disks are corotating. (a) What is the angular speed of the new system (in rad/s)? rad/s (b) If a third such disk is dropped on the first two, find the final angular speed of the system (in rad/s). rad/s
A disk of mass M is spinning freely at 5.45 rad/s when a second identical disk,...
A disk of mass M is spinning freely at 5.45 rad/s when a second identical disk, initially not spinning, is dropped onto it so that their axes coincide. In a short time the two disks are corotating. HINT (a) What is the angular speed of the new system (in rad/s)? rad/s (b) If a third such disk is dropped on the first two, find the final angular speed of the system (in rad/s). rad/s
A disk (mass of 3 kg, radius 30 cm) is rotating with an angular velocity w1=...
A disk (mass of 3 kg, radius 30 cm) is rotating with an angular velocity w1= 5 rad/s. A second disk (mass 2kg, radius 15cm), which is rotating at w= -7 rad/s is dropped on top of the first disk. The disks are dropped so that they share a rotational axis, and they stick together. The moment of inertia of a disk is 1/2mr^2. What is the final angular speed of the two disks?
A uniform disk A of mass mA= 8.2 kg turns at ωA=+50 rad/s about a fixed...
A uniform disk A of mass mA= 8.2 kg turns at ωA=+50 rad/s about a fixed central axis. Another rotating disk B of mass mB= 10.5 kg, with the same radius R of disk A, is dropped onto the freely spinning disk A (see figure). They become coupled and turn together with their centers superposed, as shown in the figure, with an angular velocity ω'=+33 rad/s. (The moment of inertia of the disk is  Id = [ 1/2]mR2, where m is...
A hoop of mass M and radius R, initially at rest, falls onto a disk of...
A hoop of mass M and radius R, initially at rest, falls onto a disk of the same mass and radius but an initial angular speed of ω1. There’s friction between the hoop and disk, but there’s no net external torque on the system consisting of the hoop and disk. (). a. For this process, the kinetic energy of the system consisting of the hoop and disk is conserved. True/False? b.For this process, the angular momentum of the system consisting...
A solid disk of mass m1 = 9 kg and radius R = 0.23 m is...
A solid disk of mass m1 = 9 kg and radius R = 0.23 m is rotating with a constant angular velocity of ω = 39 rad/s. A thin rectangular rod with mass m2 = 3.3 kg and length L = 2R = 0.46 m begins at rest above the disk and is dropped on the disk where it begins to spin with the disk. 6) The rod took t = 5.4 s to accelerate to its final angular speed...
A solid disk of mass m1 = 9.5 kg and radius R = 0.19 m is...
A solid disk of mass m1 = 9.5 kg and radius R = 0.19 m is rotating with a constant angular velocity of ω = 30 rad/s. A thin rectangular rod with mass m2 = 3.3 kg and length L = 2R = 0.38 m begins at rest above the disk and is dropped on the disk where it begins to spin with the disk. 5) What is the final rotational energy of the rod and disk system?
a solid disk of mass M and radius R is rotating on the vertical axle with...
a solid disk of mass M and radius R is rotating on the vertical axle with angular speed. another disk of mass M/2 and radius R initially not rotating falls coaxially on the disk and sticks. the rotational velicity of this system after collision is
A disk with mass m = 10.3 kg and radius R = 0.34 m begins at...
A disk with mass m = 10.3 kg and radius R = 0.34 m begins at rest and accelerates uniformly for t = 16.8 s, to a final angular speed of ω = 26 rad/s. 1) What is the angular acceleration of the disk? rad/s2 2) What is the angular displacement over the 16.8 s? rad 3) What is the moment of inertia of the disk? kg-m2 4) What is the change in rotational energy of the disk? J 5)...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT