Question

A steel pinball of mass ? = 150 g and radius ? = 1.50 cm is...

A steel pinball of mass ? = 150 g and radius ? = 1.50 cm is shot along a level horizontal surface with initial speed ?0 = 7.00 m/s. Initially the pinball is not rotating, but it quickly catches the surface and begins to roll smoothly without slipping. The pinball then encounters a ramp with 30.0o slope and is launched at a 2.00 cm height. Determine the horizontal distance the ball travels while in the air, assuming there are no thermal energy losses.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A uniform hollow spherical ball of mass 1.75 kg and radius 40.0 cm is rolling up...
A uniform hollow spherical ball of mass 1.75 kg and radius 40.0 cm is rolling up a ramp that rises at 30.0° above the horizontal. Speed of the ball at the base of the ramp is 8.20 m/s. Moment of inertia of 2 hollow sphere is given by I=(2/3)m r . (a) What is the angular velocity of the ball at the base of the ramp? (b) Determine how far up the ramp does it roll before it starts to...
A uniform hollow spherical ball of mass 1.75 kg and radius 40.0 cm is rolling up...
A uniform hollow spherical ball of mass 1.75 kg and radius 40.0 cm is rolling up a ramp that rises at 30.0° above the horizontal. Speed of the ball at the base of the ramp is 8.20 m/s. Moment of inertia of hollow sphere is given by I=(2/3)m r2. (a) What is the angular velocity of the ball at the base of the ramp? (b) Determine how far up the ramp does it roll before it starts to roll downward....
A uniform solid ball has a mass of 20 g and a radius of 5 cm....
A uniform solid ball has a mass of 20 g and a radius of 5 cm. It rests on a horizontal surface. A sharp force is applied to the ball in the horizontal direction 9 cm above the surface. The force rises linearly from 0 to a peak value of 40,000 N in 10^-4 s and then decreases linearly to 0 in another 10^-4 s. (The moment of inertia for a solid ball is (2/5)mr^2 ) What is the velocity...
A uniform solid ball has a mass of 20 g and a radius of 5 cm....
A uniform solid ball has a mass of 20 g and a radius of 5 cm. It rests on a horizontal surface. A sharp force is applied to the ball in the horizontal direction 9 cm above the surface. The force rises linearly from 0 to a peak value of 40,000 N in 10-4 s and then decreases linearly to 0 in another 10-4 s. (The moment of inertia for a solid ball is 25mR2 ) What is the velocity...
A hollow sphere (mass 8.8 kg, radius 54.8 cm) is rolling without slipping along a horizontal...
A hollow sphere (mass 8.8 kg, radius 54.8 cm) is rolling without slipping along a horizontal surface, so its center of mass is moving at speed vo. It now comes to an incline that makes an angle 56o with the horizontal, and it rolls without slipping up the incline until it comes to a complete stop. Find a, the magnitude of the linear acceleration of the ball as it travels up the incline, in m/s2.
A uniform, solid sphere of radius 3.00 cm and mass 2.00 kg starts with a purely...
A uniform, solid sphere of radius 3.00 cm and mass 2.00 kg starts with a purely translational speed of 1.25 m/s at the top of an inclined plane. The surface of the incline is 1.00 m long, and is tilted at an angle of 25.0 ∘ with respect to the horizontal. Assuming the sphere rolls without slipping down the incline, calculate the sphere's final translational speed v 2 at the bottom of the ramp.
A uniform, solid sphere of radius 3.50 cm and mass 1.25 kg starts with a purely...
A uniform, solid sphere of radius 3.50 cm and mass 1.25 kg starts with a purely translational speed of 2.50 m/s at the top of an inclined plane. The surface of the incline is 1.50 m long, and is tilted at an angle of 28.0∘ with respect to the horizontal. Assuming the sphere rolls without slipping down the incline, calculate the sphere's final translational speed ?2 at the bottom of the ramp. ?2= m/s
ch 6 1: It is generally a good idea to gain an understanding of the "size"...
ch 6 1: It is generally a good idea to gain an understanding of the "size" of units. Consider the objects and calculate the kinetic energy of each one. A ladybug weighing 37.3 mg flies by your head at 3.83 km/h . ×10 J A 7.15 kg bowling ball slides (not rolls) down an alley at 17.5 km/h . J A car weighing 1260 kg moves at a speed of 49.5 km/h. 5: The graph shows the ?-directed force ??...