Question

A film with an index of refraction n= 1.39 floats on top of water (n=1.01). A...

A film with an index of refraction n= 1.39 floats on top of water (n=1.01). A light beam with wavelength 300 nm is reflected from the top and the bottom of the film. What are the phase changes from the top and bottom reflection

Please show detailed work

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A film with an index of refraction n= 2.63 floats on top of water (n=1.33). A...
A film with an index of refraction n= 2.63 floats on top of water (n=1.33). A light beam with wavelength 700 nmnm is reflected from the top and the bottom of the film. What are the phase changes from the top and bottom reflection, respectively? no phase change, 466 nmnm phase change no phase change, no phase change 350 nmnm  phase change, 466 nmnm phase change 350 nmnm  phase change, no phase change
Light of wavelength 475 nm is incident normally on a film of water 10-4 cm thick....
Light of wavelength 475 nm is incident normally on a film of water 10-4 cm thick. The index of refraction of water is 1.33. a. What is the wavelength of the light in the water? b. How many wavelengths are contained in the distance 2t, where t is the thickness of the film? (Do not round your answer to a whole number.) c. What is the phase difference between the wave reflected from the top of the air-water interface and...
A 720 nm thick oil film floats on a plastic plate. White light incident from air...
A 720 nm thick oil film floats on a plastic plate. White light incident from air strikes the film at normal incidence. What visible wavelengths will be constructively reflected from the film? Take the wavelength of visible light in air to be from 400 nm to 700 nm. The index of refraction of the plate is 1.47 and that of the film is 1.60.
A uniform film of TiO2, 1036 nm thick and having index of refraction 2.62, is spread...
A uniform film of TiO2, 1036 nm thick and having index of refraction 2.62, is spread uniformly over the surface of crown glass of refractive index 1.52. Light of wavelength 545 nm falls at normal incidence onto the film from air. You want to increase the thickness of this film so that the reflected light cancels. (B)After you make the adjustment in part (a), what is the path difference between the light reflected off the top of the film and...
What is the thinnest film of oil which is  floating on a puddle of water in order...
What is the thinnest film of oil which is  floating on a puddle of water in order to have constructive interference for reflected light of wavelength 588. nm as seen from above the oil? The index of refraction, n, for air is 1.00. The index of refraction, n, for oil is 1.25. The index of refraction, n, for water is 1.33
Wave Optics – Thin Films A thin film 4.0X10-5cm thick interfaces with air (n=1) on each...
Wave Optics – Thin Films A thin film 4.0X10-5cm thick interfaces with air (n=1) on each its front and back surfaces and is illuminated by white light normal to its front surface. Its index of refraction is 1.5. What wavelengths within the visible spectrum will be intensified in the reflected beam? (visible light is taken to be wavelengths between 390 to 700 nm) Follow the solution outline below: Sketch the situation and label the index of refraction on each side...
puddle of water has an oily thin film floating on it. A beam of light is...
puddle of water has an oily thin film floating on it. A beam of light is shining perpendicular on the film. If the wavelength of light incident on the film is 532 nm and the indices of refraction of the oil and water are 1.40 and 1.33, respectively, what must be the minimum thickness of the film to see a bright reflection?
Due to an unwanted oil spill, a thin film of oil of refractive index 1.40 floats...
Due to an unwanted oil spill, a thin film of oil of refractive index 1.40 floats on water (refractive index 1.33). When sunlight is incident at right angles to this film, the only colors that are absent from the reflected light are blue (458nm) and red (687nm). (a) Draw a diagram showing the reflected rays for either blue or red. (b)Estimate the thickness of the oil film. (c)If the only colors enhanced by reflection were blue and red, what would...
An anti-glaring uniform thin film of magnesium fluoride (MgF2, index of refraction 1.38) covers a crown...
An anti-glaring uniform thin film of magnesium fluoride (MgF2, index of refraction 1.38) covers a crown glass case of refractive index 1.52. This film has a thickness such that it cancels normally incident light of wavelength 525 nm that strikes the film surface from air. The film is thicker than the minimum thickness to achieve this cancellation. Over time, the MgF2 film wears away at a rate of 2.10 nm per year. What is the minimum number of years before...
Please show all work. All parts of this question have the same film of index of...
Please show all work. All parts of this question have the same film of index of refraction of 1.3, which is illuminated with colors of red and blue. a. The wavelength of red is 650nm, wavelength of blue is 390nm. The film is positioned with upper surface containing the air and lower surface contacting oil with index of refraction of 1.22. What is the minimum thickness of this film which will provide strong reflection in magenta color? (Magenta is when...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT