Question

has an intensity of 0.035 W/m2. The electrons are photoelectrically emitted with a maximum speed of...

has an intensity of 0.035 W/m2. The electrons are photoelectrically emitted with a maximum speed of 6.1x105 m/s. Assume the absorption of every photon ejects an electron. (a) Convert the work function 2.89 eV to Joules. b) Determine the kinetic energy of the electron with a speed of 6.1x105 m/s. The mass of an electron is 9.11x10-31 kg (c) Determine the total energy required to both eject the electron and give it a velocity of 6.1x105 m/s. (d) Determine the total energy deposited on a 1 cm2 area (1.0x10-4 m2) in 1.00 s with light that has an intensity of 0.035 W/m2.

Homework Answers

Answer #1


part A :

Work Function W0 = 2.89 eV

1eV = 1.6 *10^-19 J

so

Wo = 2.89 *1.6*10^-19

Wo = 4.624*10^-19 Joules

-------------------------------------

part B:

Kinetic energy K = 0.5 mv^2

K =0.5 * 9.11*10^-31* (6.1*10^5)^2

K = 1.695*10^-19 J

---------------------

part C:

Total Energy = Wo + K

E = (4.624 + 1.695) *10^-19

E = 6.319 *10^-19 J

-----------------------------------------------

part D :

Intensity I= power/area

Power = I A

P = 0.035 * 1*10^-4

P = Energy/time = 3.5 *10^-6

Energy E = 3.5*10^-6 * 1

E = 3.5*10^-6 Joules

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
When light of wavelength 300.0 nm is incident on potassium, the emitted electrons have maximum kinetic...
When light of wavelength 300.0 nm is incident on potassium, the emitted electrons have maximum kinetic energy of 2.03 eV. A) Calculate the work function for potassium. B) Calculate the stopping potential if the incident light, instead, has a wavelength of 400.0 nm. C) Now, assume that the incident light has an intensity of 0.01 W/m^2, and that the potassium atom has an area of 0.01 nm^2. Using classical physics, estimate the time required for an energy equal to the...
A sound wave of frequency 349 Hz has an intensity of 4.03 ?W/m2. What is the...
A sound wave of frequency 349 Hz has an intensity of 4.03 ?W/m2. What is the amplitude of the air oscillations caused by this wave? (Take the speed of sound to be 343 m/s, and the density of air to be 1.21 kg/m3.)
A photon with frequency 9.996x1014 Hz strikes a slab of lead and is absorbed without freeing...
A photon with frequency 9.996x1014 Hz strikes a slab of lead and is absorbed without freeing an electron. a) If the frequency of that photon is the threshold frequency for lead, calculate the work function for lead. Express your answer in eV. b) Assume a photon of wavelength 200 nm strikes the lead, freeing an electron. Calculate the maximum kinetic energy (in Joules) of the liberated electron. c) Calculate the de Broglie wavelength of the emitted electron. You will need...
A. What is the energy in 10-3 eV of a photon that has a momentum of...
A. What is the energy in 10-3 eV of a photon that has a momentum of 6.13×10−29 kg ⋅ m/s ? B. What is the energy in 10-9 eV of a photon in a radio wave from an AM station that has a 1,506 kHz broadcast frequency? C. Calculate the frequency in 1020 Hz of a 0.571 MeV γ-ray photon. D. A certain molecule oscillates with a frequency of 1.73×1013 Hz. What is the approximate value of n for a...
(a) A light beam of wavelength 7.0 x 10-7 m and intensity 435 W/m2 shines on...
(a) A light beam of wavelength 7.0 x 10-7 m and intensity 435 W/m2 shines on a target of area 3.8 m2. How many photons per second are striking the target? Answer: ______________.___x 10 photons/sec (b) A particle of matter is moving with a kinetic energy of 10 eV. Its de Broglie wavelength is 7.3 x 10-10 m. What is the mass of the particle? Answer: _________________.___x 10 kg (c) Two spaceships are traveling with a relative velocity of 2.9...
A hydrogen atom has an angular momentum 5.275 x 10 ^ -34 kg * m^2/s  According to...
A hydrogen atom has an angular momentum 5.275 x 10 ^ -34 kg * m^2/s  According to the Bohr model, determine: A) The number of the orbit (main quantum number) B) The energy (eV) associated with this state. C) The radius of this orbit. D) The speed of the electron associated with this orbit. e) If a transition occurs from this state to the base state (n = 1), what is the energy that the photon has during the transition? f))....
1) The Pauli Exclusion Principle tells us that no two electrons in an atom can have...
1) The Pauli Exclusion Principle tells us that no two electrons in an atom can have the same four quantum numbers. Enter ONE possible value for each quantum number of an electron in the orbital given. Orbital n l ml ms 1s There are a total of values possible for ml. 2s There are a total of values possible for ml. 2) The Pauli Exclusion Principle tells us that no two electrons in an atom can have the same four...
1. Microwave radiation has wavelengths from 1.0×10-3 to 1.0 m, whereas the wavelength region for infrared...
1. Microwave radiation has wavelengths from 1.0×10-3 to 1.0 m, whereas the wavelength region for infrared radiation is 1.0×10-6 to 1.0×10-3 m. We can say that: (higher than, lower than, or the same) 1. The frequency of microwave radiation is infrared radiation. 2. The speed of microwave radiation is infrared radiation. 2.Infrared radiation has frequencies from 3.0×1011 to 3.0×1014 Hz, whereas the frequency region for microwave radiation is 3.0×108 to 3.0×1011 Hz. (higher than, lower than, or the same) We...
1) Describe an example of each of the following that may be found of your kitchen:...
1) Describe an example of each of the following that may be found of your kitchen: Explain how your choice falls into this category, and if there is a chemical name or symbol for it, provide that as well. Provide a photo of your example with your ID card in it. a) a compound b) a heterogeneous mixture c) an element (symbol) Moving to the Caves… Lechuguilla Caves specifically. Check out this picture of crystals of gypsum left behind in...