Question

A venturi meter is a device for measuring the speed of a fluid within a pipe....

A venturi meter is a device for measuring the speed of a fluid within a pipe. The drawing shows a gas flowing at a speed v2 through a horizontal section of pipe whose cross-sectional area A2 = 0.0600 m2. The gas has a density of ϝ = 1.40 kg/m3. The Venturi meter has a cross-sectional area of A1 = 0.0400 m2 and has been substituted for a section of the larger pipe. The pressure difference between the two sections is P2 - P1 = 190 Pa. (a) Find the speed v2 of the gas in the larger original pipe. m/s (b) Find the volume flow rate Q of the gas. m3/s

Homework Answers

Answer #1

Assuming the gas is inviscid, we can apply Bernoulli's Theorem ' p + 1/2 ??u?^2 = constant '
we get

p1 + 1/2 * ? * v1^2 = p2 + 1/2 * ? * v2^2

rearranging to get

p2 - p1 = 1/2 * ? * ( v1^2 - v2^2 )

but p2 - p1 = 170 Pa and ? = 1.5 kg/m^3

170 = 0.75 * ( v1^2 - v2^2 )

226.7 = v1^2 - v2^2

v2 = sqrt(v1^2 - 266.7) m/s

Are you told anything about v1 in the question? If so plug it in above to find the exact answer for v2

b)
The flow rate Q = ? u . n ds , which in this case is simply the velocity of the gas * area of the pipe

i.e Q = v2 * A2

where
v2 given implicitly above
A2 = 0.07 m^2

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A venturi meter is a device for measuring the speed of a fluid within a pipe....
A venturi meter is a device for measuring the speed of a fluid within a pipe. The drawing shows a gas flowing at a speed v2 through a horizontal section of pipe whose cross-sectional area A2 = 0.0800 m2. The gas has a density of ρ = 1.70 kg/m3. The Venturi meter has a cross-sectional area of A1 = 0.0500 m2 and has been substituted for a section of the larger pipe. The pressure difference between the sections is P2...
Suppose air, with a density of 1.29 kg/m3 is flowing into a Venturi meter. The narrow...
Suppose air, with a density of 1.29 kg/m3 is flowing into a Venturi meter. The narrow section of the pipe at point A has a diameter that is 0.402 times the diameter of the larger section of the pipe at point B. The U-shaped tube is filled with water and the difference in height between the two sections of pipe is h = 1.96 cm. How fast is the air moving at point B?
V=a*sqrt[2(????)gh /? (A^2 ? a^2 )] The Venturi meter. By applying Bernoulli's equation and the continuity...
V=a*sqrt[2(????)gh /? (A^2 ? a^2 )] The Venturi meter. By applying Bernoulli's equation and the continuity equation to the pipe cross-section at points 1 and 2 in the diagram of the Venturi meter at right, show that the speed of the flow at the entrance is where ? ? and ? are the densities of the fluids in the U-bend and the pipe, respectively, where A and a are the flow's cross-sectional area at points 1 and 2 respectively, where...
At a soft drink bottling plant, a horizontal section of pipe carrying citric acid in liquid...
At a soft drink bottling plant, a horizontal section of pipe carrying citric acid in liquid form goes from a cross-sectional area of 8.00 cm2, fluid flow speed of 330 cm/s, and pressure of 1.40 105 Pa to a section of pipe with a cross-sectional area of 3.60 cm2. The density of the citric acid is 1660 kg/m3. For the section of smaller pipe, determine the liquid flow speed and the liquid pressure.
A pipe has a cross sectional area of 10 cm2 with an unknown fluid, density of...
A pipe has a cross sectional area of 10 cm2 with an unknown fluid, density of 1150 kg/m3 moving at a speed of 3 m/s and has a pressure of 1.4 atm. The pipe then lowers down 2.5 meters and narrows to a cross sectional area of 2.5 cm2. What is the speed of the fluid? 1 atm = 1.01 x 105 Pa. express your answer with the correct units Determine the pressure in atm of the fluid in the...
A liquid of density 860 kg/m3 flows through a horizontal pipe that has a cross-sectional area...
A liquid of density 860 kg/m3 flows through a horizontal pipe that has a cross-sectional area of 1.40 x 10-2 m2 in region A and a cross-sectional area of 9.40 x 10-2 m2 in region B. The pressure difference between the two regions is 6.10 x 103 Pa. What are (a) the volume flow rate and (b) the mass flow rate? p.s. please box the final answers.
A liquid (ρ = 1.65 g/cm3) flows through a horizontal pipe of varying cross section as...
A liquid (ρ = 1.65 g/cm3) flows through a horizontal pipe of varying cross section as in the figure below. In the first section, the cross-sectional area is 10.0 cm2, the flow speed is 246 cm/s, and the pressure is 1.20 105 Pa. In the second section, the cross-sectional area is 4.50 cm2. (a) Calculate the smaller section's flow speed. m/s (b) Calculate the smaller section's pressure. Pa
Water flows through a horizontal pipe with a cross-sectional area of 8 m2 at a speed...
Water flows through a horizontal pipe with a cross-sectional area of 8 m2 at a speed of 12 m/s with a pressure of 200,000 Pascals at point A. At point B, the cross-sectional area is 6 m2 (7.5 points) Calculate the pressure at point B
Water is flowing in a straight horizontal pipe of variable cross section. Where the cross-sectional area...
Water is flowing in a straight horizontal pipe of variable cross section. Where the cross-sectional area of the pipe is 2.90·10-2 m2, the pressure is 10.90·105 Pa and the velocity is 0.310 m/s. In a constricted region where the area is 10.30·10-4 m2, what is the velocity? (in m/s) A: 1.97 B: 2.86 C: 4.15 D: 6.02 E: 8.73 F: 1.27×101 G: 1.84×101 H: 2.66×101 Tries 0/12 What is the pressure (in Pa)? (Assume an ideal fluid) A: 8.24×105 B:...
Water flows through a pipe that gradually descends from a height of 6.78 m to the...
Water flows through a pipe that gradually descends from a height of 6.78 m to the ground. Near the top, the cross-sectional area is 0.4 m2, and the pipe gradually widens so that its area near the ground is 0.8 m2. Water leaves the pipe at a speed of 16.8 m/s. What is the difference in the water pressure between the top and bottom of the pipe? In Pa