Question

A uniform sphere is rolling down an incline from rest and collides with a concrete block...

A uniform sphere is rolling down an incline from rest and collides with a concrete block on wheels at the bottom. The mass of the concrete block is 4 times that of the sphere. Find the final speed and directions of the sphere and the concrete block after they collide, if the collision were (a) elastic and (b) perfectly inelastic. Show all answers in terms of g and h. (c) What percent of kinetic energy does the sphere lose during the collision in part a)?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1.A small block of mass 3.5 kg starting from rest slides down on an incline plane...
1.A small block of mass 3.5 kg starting from rest slides down on an incline plane of height 2.0 m, 40 degrees with respect to horizontal (Fig. 2). The coefficient of kinetic friction between the block and the incline plane is 0.25. At the end of the incline plane, the block hits the top of a hemispherical mound of ice (radius 1.0 m) , loses 75% of final kinetic energy (KE=0.5mv*v) before the collision, then slide down on the surface...
Block A of mass mA=6kg ,slides down an incline from a height of 10 m from...
Block A of mass mA=6kg ,slides down an incline from a height of 10 m from the ground. Block A then collide with block B, with a mass mB=8kg which is at rest in the ground. The collision is elastic. There is no friction between the blocks and the incline nor between the blocks and the ground. a) Find the velocity of A before it collides with B ( 5 points) b) Find the maximum height that block A climbs...
A solid sphere of uniform density starts from rest and rolls without slipping a distance of...
A solid sphere of uniform density starts from rest and rolls without slipping a distance of d = 4.4 m down a θ = 22°incline. The sphere has a mass  M = 4.3 kg and a radius R = 0.28 m. 1)Of the total kinetic energy of the sphere, what fraction is translational? KE tran/KEtotal = 2)What is the translational kinetic energy of the sphere when it reaches the bottom of the incline? KE tran = 3)What is the translational speed...
An object of mass m1=0.410kg starts from rest at point A and slides down an incline...
An object of mass m1=0.410kg starts from rest at point A and slides down an incline surface that makes an angle of 25.0° with the horizontal. The coefficient of kinetic friction between the object and the incline surface is 0.395. After sliding down a distance d=6.50m, it makes a perfectly inelastic collision with an object of mass m2=0.630kg at point B. A) Find the speed of m1 at point B just before the collision B) Find the energy loss during...
A block of mass m = 2.10 kg slides down a 30.0∘ incline which is 3.60...
A block of mass m = 2.10 kg slides down a 30.0∘ incline which is 3.60 m high. At the bottom, it strikes a block of mass M = 8.00 kg which is at rest on a horizontal surface (Figure 1). (Assume a smooth transition at the bottom of the incline.) The collision is elastic, and friction can be ignored. Determine the speed of the block with mass m = 2.10 kg after the collision. Determine the speed of the...
A block of mass M sits at rest at the top of a frictionless curved ramp...
A block of mass M sits at rest at the top of a frictionless curved ramp of height h. After being released, the block is moving with speed 4v when it collides with a block of mass 1.5M at the bottom of the ramp. Immediately following the collision, the larger block has a speed 2v. The second block is attached to a vertical rope, and swings freely as a pendulum after the collision. The pendulum string has length L. a)...
A hollow sphere with v0 = 0 starts rolling down a 3,0m long, 20° incline. a)...
A hollow sphere with v0 = 0 starts rolling down a 3,0m long, 20° incline. a) Draw a figure showing the forces acting on the sphere and calculate the sphere's acceleration. b) Calculate the velocity of the ball at the bottom of the incline. c) What would the sphere's speed at the end of the incline be without friction? Shortly describe the result.
1.Acceleration down the incline at different angles: The motion of a ball rolling down the incline...
1.Acceleration down the incline at different angles: The motion of a ball rolling down the incline at several different values of θ. If a 0.200 kg ball starts from rest on an incline with θ=30º, what will its acceleration be, and what is the magnitude of the normal force exerted by the incline during the motion? If the ball starts from an initial height of 30.0 cm above its height at the bottom of the incline, what is its final...
A 5 kg block with a speed of 3.0 m/s collides with a 10 kg block...
A 5 kg block with a speed of 3.0 m/s collides with a 10 kg block that has a speed of 2.0 m/s in the same direction. After the collision, the 10 kg block travels in the original direction with a speed of 2.5 m/s. (a) Draw (i) a before/after sketch, (ii) momentum & energy bar diagrams of the situation, and (iii) identify the collision as elastic, inelastic and completely inelastic. (b) what is the velocity of the 5.0 kg...
A 2.84 kg block, traveling at a speed of 12.4 m/s, undergoes a perfectly inelastic collision...
A 2.84 kg block, traveling at a speed of 12.4 m/s, undergoes a perfectly inelastic collision with a 3.68 kg block which starts at rest. a) Find the final speed of each block. b) Calculate how much energy was lost in the collision (final kinetic energy minus initial kinetic energy). If you were unable to calculate the answer to part (a), assume the final velocity is 5.00 m/s. c) How much energy would have been lost if the collision were...