Question

1. A 50.5 kg quarterback is running with a football downfield at a speed of 2...

1. A 50.5 kg quarterback is running with a football downfield at a speed of 2 m/s and is tackled by another player with a mass of 70 kg running toward him at 4 m/s. When the tackler grabs the quarterback, they both fall backward at the same speed of 1 m/s (opposite to the original direction of the quarterback). In the process, the 0.5 kg football comes loose at the moment the collision takes place.

a) Calculate the velocity of the fumbled football.

b) What is the impulse delivered to the quarterback? (Do not include the mass of the football).

c) If the impact of the tackle lasts for 0.1 second, then find the average force of the tackler on the quarterback.

Homework Answers

Answer #1

Let me know in comments if you need any further clarification on this.
Please upvote if you have understood the solution. Thank you.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A football receiver running straight downfield at 4.60 m/s is 11.5 m in front of the...
A football receiver running straight downfield at 4.60 m/s is 11.5 m in front of the quarterback when a pass is thrown downfield at 31.0° above the horizon. If the receiver never changes speed and the ball is caught at the same height from which it was thrown, find the football's initial speed, the amount of time the football spends in the air, and the distance between the quarterback and the receiver when the catch is made. (a) the football's...
A 89.5-kg fullback running east with a speed of 5.05 m/s is tackled by a 95.5-kg...
A 89.5-kg fullback running east with a speed of 5.05 m/s is tackled by a 95.5-kg opponent running north with a speed of 3.10 m/s. (a) Explain why the successful tackle constitutes a perfectly inelastic collision. (b) Calculate the velocity of the players immediately after the tackle (I HAVE THE ANSWER TO B) magnitude: 2.91 ?direction: 33.25 m/s north of east (c) Determine the mechanical energy that disappears as a result of the collision. J Account for the missing energy....
I ONLY NEED PART B ANSWERED A 77.0-kg fullback running east with a speed of 5.40...
I ONLY NEED PART B ANSWERED A 77.0-kg fullback running east with a speed of 5.40 m/s is tackled by a 79.0-kg opponent running north with a speed of 3.00 m/s. (a) Explain why the successful tackle constitutes a perfectly inelastic collision. ___________________ (b) Calculate the velocity of the players immediately after the tackle. magnitude=_____ m/s direction=______ ° north of east HINT: Find the total momentum of the two players before the collision and use conservation of momentum to find...
A halfback with a mass m1 = 95 kg is running up field with a speed...
A halfback with a mass m1 = 95 kg is running up field with a speed of v1 = 7.6 m/s. He is tackled by an opponent with a mass m2 = 125 kg, who approaches the halfback at an angle β = 30°with a velocity v2 = 4.2 m/s. Assume the collision is perfectly inelastic. a) Calculate the magnitude and direction of the resultant velocity of the two players just after the tackle. (3 pts.) b) Calculate the change...
A running back with a mass of 76 kg and a velocity of 5 m/s (toward...
A running back with a mass of 76 kg and a velocity of 5 m/s (toward the right) collides with, and is held by, a 114-kg defensive tackle going in the opposite direction (toward the left). What is the velocity of the tackle before the collision for their velocity afterward to be zero? (Remember, velocity is a vector)
A 116 kg football player is running at 8.05 m/s. A hard-thrown 0.410 kg football has...
A 116 kg football player is running at 8.05 m/s. A hard-thrown 0.410 kg football has a speed of 23.5 m/s. (Assume the football player is running in the +x-direction.) Assuming that the football player catches the ball with his feet off the ground with both of them moving horizontally, calculate the following. (a) the final velocity (in m/s) if the ball and player are going in the same direction (Indicate the direction with the sign of your answer. Enter...
A 85 kg fullback moving east with a speed of 6.0 m/s is tackled by a...
A 85 kg fullback moving east with a speed of 6.0 m/s is tackled by a 98 kg opponent running north at 2.0 m/s. (a) If the collision is perfectly inelastic, calculate the velocity of the players just after the tackle. m/s (b) If the collision is perfectly inelastic, calculate the kinetic energy lost as a result of the collision. J Can you account for the missing energy?
A 88 kg fullback moving east with a speed of 6.0 m/s is tackled by a...
A 88 kg fullback moving east with a speed of 6.0 m/s is tackled by a 100 kg opponent running north at 2.0 m/s. If the collision is perfectly inelastic, calculate each of the following. (a) the velocity of the players just after the tackle _____ m/s (b) the kinetic energy lost as a result of the collision _____J Can you account for the missing energy?
A 115 kg football player runs with a velocity of 4.6 m/s north and collides with...
A 115 kg football player runs with a velocity of 4.6 m/s north and collides with a second 135 kg football player running south. Following the collision the two players are both moving south at 0.75 m/s. What was the speed of the second football player initially? Report the value in m/s rounded to the nearest tenth.
Please Solve 2 physics problems for me... 1. a 79.9 kg football player moving with a...
Please Solve 2 physics problems for me... 1. a 79.9 kg football player moving with a speed of 4.68m/s collides mid-air with another player and gets knocked backwards. if the player experiences an average force of 2560N over a time period of 0.234s, then determine the speed (in m/s) of the player. 2. A 0.144kg softball is pitched horizontally at 32m/s. The ball moves in the opposite direction at 32.0m/s after it is hit by the bat. a) what is...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT