Question

A metal cylinder of mass m = 5 kg with a coaxial hole is sliding horizontally...

A metal cylinder of mass m = 5 kg with a coaxial hole is sliding horizontally on a metal rod. A spring with spring constant ? = 500 N/m is attached to the cylinder. The other end of the spring is attached on a table at a vertical distance of ℎ = 0.3 m below the cylinder. The spring has an equilibrium length of ?0 = 0.5 m.

a) Draw a free-body diagram of the cylinder

b) Show that the horizontal force from the spring on the cylinder is: ?? = −?? (1 − (?0 /sqrt(?^2 + ℎ^2 ))

c) Show that the vertical component of the spring force acting on the cylinder is: ?? = −?ℎ (1 − (?0 /sqrt(?^2 + ℎ ^2 )))

d) What is the normal force from the rod acting on the cylinder when the spring is at its natural equilibrium length?

e) Show that the normal force ?(?) from the rod acting on the cylinder as a function of position ? is: ? = ?ℎ (1 − (?0 /sqrt(?^2 + ℎ^2)) + ??. Discuss the direction of the normal force.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A metal cylinder with a mass of 1.20 kg is attached to a spring and is...
A metal cylinder with a mass of 1.20 kg is attached to a spring and is able to oscillate horizontally with negligible friction. The cylinder is pulled to a distance of 0.200 mfrom its equilibrium position, held in place with a force of 17.0 N, and then released from rest. It then oscillates in simple harmonic motion. (The cylinder oscillates along the x-axis, where x = 0 is the equilibrium position.) (a) What is the spring constant (in N/m)? _____...
A uniform metal rod, with a mass of 3.0 kg and a length of 1.1 m...
A uniform metal rod, with a mass of 3.0 kg and a length of 1.1 m , is attached to a wall by a hinge at its base. A horizontal wire bolted to the wall 0.55 mabove the base of the rod holds the rod at an angle of 30 ? above the horizontal. The wire is attached to the top of the rod. (a) Find the tension in the wire T = ________ N (b) Find the hortizonal component...
A particle with mass 2.61 kg oscillates horizontally at the end of a horizontal spring. A...
A particle with mass 2.61 kg oscillates horizontally at the end of a horizontal spring. A student measures an amplitude of 0.923 m and a duration of 129 s for 65 cycles of oscillation. Find the frequency, ?, the speed at the equilibrium position, ?max, the spring constant, ?, the potential energy at an endpoint, ?max, the potential energy when the particle is located 68.5% of the amplitude away from the equiliibrium position, ?, and the kinetic energy, ?, and...
A block of mass m = 0.53 kg attached to a spring with force constant 119...
A block of mass m = 0.53 kg attached to a spring with force constant 119 N/m is free to move on a frictionless, horizontal surface as in the figure below. The block is released from rest after the spring is stretched a distance A = 0.13 m. (Indicate the direction with the sign of your answer. Assume that the positive direction is to the right.) The left end of a horizontal spring is attached to a vertical wall, and...
A 0.50 kg mass sliding on a horizontal frictionless surface is attached to one end of...
A 0.50 kg mass sliding on a horizontal frictionless surface is attached to one end of a horizontal spring (with k = 325 N/m) whose other end is fixed. The mass has a kinetic energy of 16.0 J as it passes through its equilibrium position (the point at which the spring force is zero). At what rate is the spring doing work on the mass as the mass passes through its equilibrium position? At what rate is the spring doing...
A cylindrical rod of mass 0.82 kg and length 1.88 m is free to rotate about...
A cylindrical rod of mass 0.82 kg and length 1.88 m is free to rotate about a pivot fixed at one end. A ball with a mass of 3.2 kg is attached to the other end of the rod. The rod-and ball system is held in a horizontal position by a vertical force that acts 1.41 m from the pivot. The force is then removed, and the rod-and-ball swings down. (a) What was the vertical force used to hold the...
A cylindrical rod of mass 0.82 kg and length 1.88 m is free to rotate about...
A cylindrical rod of mass 0.82 kg and length 1.88 m is free to rotate about a pivot fixed at one end. A ball (mass 3.2 kg) is attached to the other end of the rod. The rod-and- ball system is held in a horizontal position by a vertical force that acts 1.41 m from the pivot. The force is then removed, and the rod-and-ball swings down. (a) (4 points) What was the vertical force used to hold the system...
A cylinder of mass M = 2.0 kg, radius, R = 0.54 m is pulled forward...
A cylinder of mass M = 2.0 kg, radius, R = 0.54 m is pulled forward along a horizontal surface with a force of magnitude F = 120.0 N applied horizontally to the axis of the cylinder as shown. Moment of inertia of a cylinder about its axis is Icylinder = 1/2MR^2. What is the magnitude of the friction force necessary for the cylinder to roll without slipping?
A uniform rod AB of length 7.2 m and mass M = 3.8 kg is hinged...
A uniform rod AB of length 7.2 m and mass M = 3.8 kg is hinged at A and held in equilibrium by a light cord. A load W = 22 N hangs from the rod at a distance d so that the tension in the cord is 80 N . Part A) Determine the vertical force on the rod exerted by the hinge. Part B)Determine the horizontal force on the rod exerted by the hinge. Part C) Determine d...
A system consists of a point mass m=0.76kg and a uniform solid cylinder of mass Mcylinder=2.15kg...
A system consists of a point mass m=0.76kg and a uniform solid cylinder of mass Mcylinder=2.15kg and radius R=0.43m attached to both ends of a uniform rigid rod of mass Mrod=2.15kg and length L=2.71m, as shown in the figure. The system is free to rotate about the y axis, which is at a distance x away from the point mass. The y axis is parallel to the side of the cylinder and perpendicular to the length of the rod. Find...