Question

A system comprises two objects, a massless string, a frictionless (but not massless) pulley and the Earth. The objects, 1 and 2, have masses of 0.111 and 0.316 kg, respectively, and hang from opposite ends of the string, which is draped over the pulley. The pulley has a radius of 0.100 m. Initially, you are holding Object 1 to keep the system from moving. Then you let go, allowing the objects to move a vertical distance of 1.00 m and reach a final speed of 2.2491 m/s.

a) What has been the change in gravitational potential energy?

b) What is the final translational kinetic energy of the two objects combined?

c) What is the final rotational kinetic energy of the pulley?

d) What is the final tangential speed of the pulley?

e) What is the final angular speed of the pulley?

f) What is the rotational inertia of the pulley?

Answer #1

The answer is given below. Please upvote (Thumbs up).

Two masses are connected by a massless string, passing over a
massless, frictionless pulley as shown in the diagram. Mass
m1 = 5 kg, and is released from rest at a
height h = 4 m above the table. Mass
m2 = 3 kg, and starts at rest on the table.
Ignore friction and air resistance. Take the system to be the two
masses and the earth. What is the potential energy of this system,
in Joules? Next, you let...

Two masses are connected by a massless string and a frictionless
pulley. The masses of the blocks are; m1=500 g and m2= 150g. The
coefficiant of friction between m1 and the surface is 0.25. (a)
What is the acceleration of the masses? (b) What is the tension in
the string?

Two masses, m1 and m2 hang over a frictionless pulley by means
of a massless string. They are perfectly balanced when a flea of
mass m3 is standing on m2. When the flea hops from one mass to the
other, the system acquires an acceleration, a. What is the value of
the flea's mass, m3 in terms of two masses, m1 and m2, and the
acceleration, a? (a) what is m3 in terms of m1 and m2? (b) what is...

Two blocks are connected by a string that passes over a
massless, frictionless pulley, as shown in the figure. Block A,
with a mass mA = 2.00 kg, rests on a ramp
measuring 3.0 m vertically and 4.0 m horizontally. Block B hangs
vertically below the pulley. Note that you can solve this exercise
entirely using forces and the constant-acceleration equations, but
see if you can apply energy ideas instead. Use g = 10
m/s2. When the system is released...

Two blocks are connected by a massless string that runs across a
frictionless pulley with a mass of 5.00 kg and a radius of 10.0 cm.
The first block with an unknown mass of m1 sits on a horizontal
surface and is also connected to a spring with a spring constant of
k = 250 N/m. The coefficient of kinetic friction between the first
block and the surface is 0.400. The second block with a mass of m2
= 6.00...

Two masses are tied together by a string over a massless pulley
so that they can both move vertically. One mass is 5kg and the
other is 1kg. The masses are released from rest. How for does one
mass fall to reach a velocity of 10 m/s
a. 5.9 m
b. 12.5 m
c. 9.87 m
d. 6.78 m
e. 7.65 m
f. 4.56 m

Two blocks (m1=5.5kg, m2=7.2kg
) are connected by a string that passes through a massless pulley
as shown in the Figure. The first block with mass
m1 slides up the inclined
plane when the system is released. The inclined plane makes an
angle θ = 310 with the
horizontal and the kinetic friction coefficient between the
inclined plane and m1 is
=0.35. Take g=10m/s2 Find
the speed of the block with mass m2 after it travels
h=5.6m.

Two blocks with masses M1 and M2 are connected by a massless
string that passes over a massless pulley as shown.
M1 has a mass of 2.25 kg and is on an incline of θ1=46.5∘ with
coefficient of kinetic friction μ1=0.205.
M2 has a mass of 6.05 kg and is on an incline of θ2=33.5∘ with
coefficient of kinetic friction μ2=0.105.
The two‑block system is in motion with the block of mass M2
sliding down the ramp.
Find the magnitude...

A 4.00 kg block hangs by a light string that passes over a
massless, frictionless pulley and is connected to a 6.00 kg block
that rests on a frictionless shelf. The 6.00 kg block is pushed
agaisnt a spring to which it is not attached. THe spring has a
spring constant of 180 N/m , and it is compressed by 30.0cm. Find
the speed of the block after the spring is released and the 4.00 kg
block has fallen a...

Two blocks are attached to opposite ends of a string that passes
over a massless, frictionless pulley (see the figure). Block ? of
mass 10.0 kg lies on a 60.0° incline with a coefficient of friction
of 0.500, and block ? of mass 1.00 kg is attached to a vertical
spring of force constant 200 N/m. The blocks are initially at rest
with the spring at equilibrium. Find the maximum height that the
block ? rises.

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 5 minutes ago

asked 46 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago

asked 3 hours ago

asked 3 hours ago

asked 4 hours ago

asked 4 hours ago