Question

(c) (9 marks) A light spring of stiffness 50.0 Nm”1 hangs vertically with its lower end...

(c)
A light spring of stiffness 50.0 Nm”1 hangs vertically with its lower end at a point O
when no load is attached.
(i) Outline what is meant by simple harmonic motion.
(ii) If a small mass of 0.50 kg is now attached to the end of the spring, how far does the
mass sag relative to point O?
The mass is now pulled down and released (from rest) at a point 0.15 m below O.
(iii) Write an equation to describe the position of the mass, as measured from the
origin at O, as a function of time t, from the instant the mass is released.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A spring/mass system is shown in four different states: The spring hangs vertically in equilibrium with...
A spring/mass system is shown in four different states: The spring hangs vertically in equilibrium with no mass at its end. A 2.6 kg mass hangs from the spring in equilibrium, stretching the spring b=5.7 cm. The mass is pulled down a distance c and released. The mass is at the reference height moving with a speed of v=8.4 m/s. How far down (c) was the mass pulled before it was released? (Hint: you can calculate the spring constant with...
1 A massless spring with spring constant ? hangs from the ceiling with a small object...
1 A massless spring with spring constant ? hangs from the ceiling with a small object of mass ? attached to its lower end. The object is initially held at the spring’s rest position. The object is then released oscillates up and down, with its lowest position being 10 ?? below the point from which it was released. a) What is the value of the ratio of the spring constant of the spring over the mass attached? That is, what...
A particle with mass 2.61 kg oscillates horizontally at the end of a horizontal spring. A...
A particle with mass 2.61 kg oscillates horizontally at the end of a horizontal spring. A student measures an amplitude of 0.923 m and a duration of 129 s for 65 cycles of oscillation. Find the frequency, ?, the speed at the equilibrium position, ?max, the spring constant, ?, the potential energy at an endpoint, ?max, the potential energy when the particle is located 68.5% of the amplitude away from the equiliibrium position, ?, and the kinetic energy, ?, and...
A mass m = 1.4 kg hangs at the end of a vertical spring whose top...
A mass m = 1.4 kg hangs at the end of a vertical spring whose top end is fixed to the ceiling. The spring has spring constant k = 75 N/m and negligible mass. At time t = 0 the mass is released from rest at a distance d = 0.35 m below its equilibrium height and undergoes simple harmonic motion with its position given as a function of time by y(t) = A cos(ωt – φ). The positive y-axis...