Question

White light is shone perpendicularly onto a film of unknown thickness, with index of refraction n=1.5....

White light is shone perpendicularly onto a film of unknown thickness, with index of refraction n=1.5.

a) How thick would the film have to be for each of the following colors of light to be absorbed due to destructive interference?

Red (f= 4 x 10^14 Hz)

Green (f= 5.45 x 10^14 Hz)

Blue (f= 6.38 x 10^14 Hz)

b) Draw a ray diagram that indicates the path of the red light from part a) into and out of the film and justify the fact that red will not be seen in the reflected light.

Homework Answers

Answer #1

a) Wavelength of the given light will be:

So for Red light, the wavelength is: 750 nm

Similarly for green, the wavelength is: 550nm and Blue light is 470nm

For destructive interference, the path difference between the waves reflected from upper and lower edges should be half of the wavelength.

For normal incidence,

Here, n = 1.5

So, for Red light, the minimum thickness will be:

t = 125nm

For green light, t = 91.66 nm and for blue light, t = 78.33nm.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a glass block (n=1.5) that is covered by a thin transparent film (n=1.25). White light...
Consider a glass block (n=1.5) that is covered by a thin transparent film (n=1.25). White light is incident normal to the film. When viewed in reflected light, fully destructive interference occurs at 600 nm and fully constructive interference at 700 nm. A) Calculate the thickness of the film. B) How much light (%) will pass through the film into the glass?
White light is shone on a very thin layer of mica (n = 1.57) that is...
White light is shone on a very thin layer of mica (n = 1.57) that is surrounded by air (n = 1.00) above the film and the film rests on a material with index n = 1.80. Above the layer of mica, interference maxima for two wavelengths (and no others in between) are seen; one blue wavelength of 480 nm, and one yellow wavelength of 560 nm. What is the thickness of the mica layer? If the thickness of the...
White light is shone on a very thin layer of mica (n = 1.57) that is...
White light is shone on a very thin layer of mica (n = 1.57) that is surrounded by air (n = 1.00) above the film and the film rests on a material with index n = 1.80. Above the layer of mica, interference maxima for two wavelengths (and no others in between) are seen; one blue wavelength of 480 nm, and one yellow wavelength of 560 nm. What is the thickness of the mica layer? If the thickness of the...
A uniform film of TiO2, 1036 nm thick and having index of refraction 2.62, is spread...
A uniform film of TiO2, 1036 nm thick and having index of refraction 2.62, is spread uniformly over the surface of crown glass of refractive index 1.52. Light of wavelength 545 nm falls at normal incidence onto the film from air. You want to increase the thickness of this film so that the reflected light cancels. (B)After you make the adjustment in part (a), what is the path difference between the light reflected off the top of the film and...
White light is shone on a very thin layer of glass (n = 1.5), and above...
White light is shone on a very thin layer of glass (n = 1.5), and above the glass layer, interference maxima for two wavelengths (and no other in between) are seen: one green wavelength of 550 nm, and one orange wavelength of 610 nm. What is the thickness of the glass layer? 1862 nm 1859 nm 1860 nm 1861 nm
1. Light traveling in air (index of refraction 1.00) falls onto a thin plastic film (index...
1. Light traveling in air (index of refraction 1.00) falls onto a thin plastic film (index of refraction 1.30) of unknown thickness that covers glass (index of refraction 1.50). What minimum non-zero thickness is needed such that wavelengths of 650 nm in air are bright in the reflection? 2. You observe two point sources of light that are spaced 10 cm apart which are each emitting light of wavelength of 590 nm. If the diameter of your pupil is 2...
Red light with wavelength 600[nm] is incident from air (n = 1.0) onto a thin film...
Red light with wavelength 600[nm] is incident from air (n = 1.0) onto a thin film of index n = 1.5. The thin film coats a thick slab of material which has index n = 2.0.   1: For what minimum film thickness would the thin film produce no significant overall reflection due to destructive interference? 2: Did the reflections off of those two interfaces have the same phase change (both 0º or both 180º)? Or did the reflections off of...
1. A bat uses very high frequencies so: a. He will kill the insects he's hunting...
1. A bat uses very high frequencies so: a. He will kill the insects he's hunting b. We won't hear them c. The sound waves will be small compared to the insects d. The sound waves will be large compared to the insects e. He can tune in to KMET for the weather report 2. Bees see somewhat into the ultraviolet. This is because: a. They use radar b. They can see in the dark c. They evolved with a...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT