Question

A conducting rod of mass M with negligible electrical resistance slides on a pair of frictionless,...

A conducting rod of mass M with negligible electrical resistance slides on a pair of frictionless, horizontal, parallel, conducting rails separated by a distance L. The two rods are connected by an electrical resistance of R. A uniform magnetic field B is directed vertically upward in the entire region.

  1. Looking from above, is the conventional current flowing cw or ccw?                                                                                                       (2 pt)
  2. Determine the current through the resistor.                                                                                          (4 pt)
  3. Find the force necessary to keep the rod moving at a constant speed.                                                                                             (2 pt)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A conducting bar of slides on frictionless conducting rails, falling under the influence of ordinary gravity....
A conducting bar of slides on frictionless conducting rails, falling under the influence of ordinary gravity. The rails are vertical and they sit in a powerful magnetic field which is perpendicular to the plane of the rails. The bar somehow maintains good electrical contact with the rails. At the top of the bar, the two rails are connected by a fixed resistor, R. a. As the bar falls, a current will be induced. Will this current be in the clockwise...
A conducting rod slides down between two frictionless vertical copper tracks at a constant speed of...
A conducting rod slides down between two frictionless vertical copper tracks at a constant speed of 5.6 m/s perpendicular to a 0.57-T magnetic field. The resistance of the rod and tracks is negligible. The rod maintains electrical contact with the tracks at all times and has a length of 1.2 m. A 1.1- resistor is attached between the tops of the tracks. (a) What is the mass of the rod? (b) Find the change in the gravitational potential energy that...
A bar of resistance 4.2 -Ω slides along a pair of vertical conducting poles separated by...
A bar of resistance 4.2 -Ω slides along a pair of vertical conducting poles separated by L=4.0 m and are electrically connected at the base. The poles and the base have negligible resistance. There is a constant magnetic field of strength B=0.15 T perpendicular to the plane of the poles, in the direction into the page. If the bar is moving downward at v= 3 m/s, what emf is induced in the bar? What is the induced current? If the...
A uniform magnetic field is directed into the screen. There are two parallel conducting rails, running...
A uniform magnetic field is directed into the screen. There are two parallel conducting rails, running horizontally, in the field, with a conducting rod on top of the rails. The rails are a distance L apart. The picture shows a force F directed to the right on the rod. The rails are joined at the left by a resistor of resistance R. ​We'll use these values: L = 20 cm; B = 4.0 T; F = 3.2 N; and R...
A conducting rod is pulled horizontally with constant force F= 3.40 N along a set of...
A conducting rod is pulled horizontally with constant force F= 3.40 N along a set of rails separated by d= 0.380 m. A uniform magnetic field B= 0.600 T is directed into the page. There is no friction between the rod and the rails, and the rod moves with constant velocity v= 4.80 m/s. Using Faraday's Law, calculate the induced emf around the loop in the figure that is caused by the changing flux. Assign clockwise to be the positive...
A conducting bar of length 2.0 m moves on two horizontal frictionless rails with a resistor...
A conducting bar of length 2.0 m moves on two horizontal frictionless rails with a resistor that is connected at the left ends between the two rails. A constant force of magnitude 1.0 N moves the bar at a uniform speed of 2.0 m/s to the right through a magnetic field-B that is directed into the page. Draw the diagram. If the resistor in the loop is 8.0 ohms, what is the direction and magnitude of the induced current in...
In the figure, a metal rod is forced to move with constant velocity along two parallel...
In the figure, a metal rod is forced to move with constant velocity along two parallel metal rails, connected with a strip of metal at one end. A magnetic field of magnitude B = 0.321 T points out of the page. (a) If the rails are separated by 35.4 cm and the speed of the rod is 50.8 cm/s, what is the magnitude of the emf generated in volts? (b) If the rod has a resistance of 21.7 Ω and...
Review Conceptual Example 3 and the drawing as an aid in solving this problem. A conducting...
Review Conceptual Example 3 and the drawing as an aid in solving this problem. A conducting rod slides down between two frictionless vertical copper tracks at a constant speed of 5.9 m/s perpendicular to a 0.52-T magnetic field. The resistance of the rod and tracks is negligible. The rod maintains electrical contact with the tracks at all times and has a length of 1.3 m. A 0.56- resistor is attached between the tops of the tracks. (a) What is the...
A conducting bar of length L and resistance R is free to slide on frictionless conducting...
A conducting bar of length L and resistance R is free to slide on frictionless conducting rails of negligible resistance. The circuit is immersed in a uniform and steady magnetic field of strength B. Initially the bar is at rest and the switch is open. The switch is closed. The battery provides a steady voltage V. a) What is the direction of the current at the instant the switch is closed? b) What is the magnitude of the current at...
A vacuum chamber in the basement of Kettering University is filled with a uniform magnetic field...
A vacuum chamber in the basement of Kettering University is filled with a uniform magnetic field of magnitude  6.4×10−2T pointing in the negative y -direction. Choose your coordinate system so that the origin coincides with the floor of the chamber and the positive z -direction points vertically upward. Laying on the floor of the chamber are two cylindrical iron rods (one long and one short) laying parallel to the x -axis. The long iron rod has a length of  1.91m and a...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT