Question

A 1 kg block moving at 10 m/s collides elastically with a 3 kg block initially...

A 1 kg block moving at 10 m/s collides elastically with a 3 kg block initially at rest. The final kinetic energy of the 1 kg block is what percent of its initial kinetic energy?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A) A block of mass m1=6.0 kg is initially moving at 5.0 m/s to the right...
A) A block of mass m1=6.0 kg is initially moving at 5.0 m/s to the right and collides inelastically with an initially stationary block of mass m2=18.0 kg. The two objects become stuck together. Find the final velocity of the two blocks. B) A block of mass m1=6.0 kg is initially moving at 5.0 m/s to the right and collides elastically with an initially stationary block of mass m2=18.0 kg. After the collision, block m2 is moving to the right...
A block with mass m1 = 10 kg moving at 5 m/s collides with another block...
A block with mass m1 = 10 kg moving at 5 m/s collides with another block with mass m2 = 20 kg moving the other way at 1 m/s. The two blocks stick together after the collision. (a) What is their common final velocity, vf ? (b) The blocks collide again, this time elastically. Assume that the outgoing blocks move away from the collision along the initial line of approach. What are the final velocities, v1f and v2f ?
A block moving with speed vo = 10 m/s and mass m1 = 6 kg collides...
A block moving with speed vo = 10 m/s and mass m1 = 6 kg collides with a block of mass m2 = 5 kg initially at rest. (Both slide on a frictionless surface at all times.) Now the two blocks collide with a third block initially at rest. What is the final momentum of the system? Question options: A) 30 kg-m/s B) 60 kg-m/s C) 190 kg-m/s D) 250 kg-m/s E) 310 kg-m/s
a 1.5 kg car (1) initially moving at 4.0 m/s to the right collides with a...
a 1.5 kg car (1) initially moving at 4.0 m/s to the right collides with a 2.0 kg car (2) initially moving at 2.0 m/s to the left. After the inelastic collision, car 1 is moving to the left at 1.2 m/s A) What is the velocity and direction of car 2 after the collision? B) What is the change in total kinetic energy and the percentage of initial kinetic energy remaining after the collision?
A ball with mass M, moving horizontally at 5.4 m/s, collides elastically with a block with...
A ball with mass M, moving horizontally at 5.4 m/s, collides elastically with a block with mass 2.8M that is initially hanging at rest from the ceiling on the end of a 46-cm wire. Find the maximum angle through which the block swings after it is hit, in degrees.
A 2.00-kg ball is moving at 4.80 m/s toward the right. It collides elastically with a...
A 2.00-kg ball is moving at 4.80 m/s toward the right. It collides elastically with a 4.00-kg ball that is initially at rest. 1. Calculate the final velocity of the 2.00-kg ball. (Express your answer to three significant figures.) 2. Calculate the final velocity of the 4.00-kg ball. (Express your answer to three significant figures.)
6) Mass 1 of 6 kg is initially moving at 9 m/s in the +x direction...
6) Mass 1 of 6 kg is initially moving at 9 m/s in the +x direction and it collides perfectly elastically with mass 2 of 3 kg initially at rest. What is the final velocity of mass 2 after the collision in m/s? (Note: the masses are not needed to answer this question.)
8) A 0.280 kg glider moving at a 0.900 ?̂ m/s on horizontal track collides elastically...
8) A 0.280 kg glider moving at a 0.900 ?̂ m/s on horizontal track collides elastically with a second glider initially at rest. After the collision the velocity of the first glider is a 0.240 ?̂ m/s. What is the mass of the second glider?
A ball with a mass of 2 kg is initially moving to the right with a...
A ball with a mass of 2 kg is initially moving to the right with a speed of 3 m/s. It collides with a 5 kg ball moving to the left with a speed of 1 m/s. The balls collide partially elastically: 70% of the initial kinetic energy of the system is conserved in the collision. Find the final velocity of each ball. The balls move only along the x-axis. Show your work.
Mass ( m 1 = 1 kg ) initially moving at a speed of 10 m/s...
Mass ( m 1 = 1 kg ) initially moving at a speed of 10 m/s , collides in a perfectly elastic collision with ( m 2 = 3 kg ) initially at rest. After the collision m 2 moves with a speed of 4 m/s at an angle of while m 1 moves with a final speed v f 1 at an angle Determine the final speed vf1 and the angles θ, α.