Question

A 800- kg car collides with a 1400- kg car that was initially at rest at...

A 800- kg car collides with a 1400- kg car that was initially at rest at the origin of an x-y coordinate system. After the collision, the lighter car moves at 20.0 km/h in a direction of 40 o with respect to the positive x axis. The heavier car moves at 23 km/h at -42 o with respect to the positive x axis. What was the initial speed of the lighter car (in km/h)? What was the initial direction (as measured counterclockwise from the x-axis)?

Homework Answers

Answer #1

Conclusion:-

  • Initial speed of the lighter car = 47.37 kmph
  • Initial direction = -17.29 degree

If it is helpful to you then please like it.

Thankyou

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 900- kg car collides with a 1300- kg car that was initially at rest at...
A 900- kg car collides with a 1300- kg car that was initially at rest at the origin of an x-y coordinate system. After the collision, the lighter car moves at 10.0 km/h in a direction of 35 o with respect to the positive x axis. The heavier car moves at 13 km/h at -49 o with respect to the positive x axis. What was the initial speed of the lighter car (in km/h)? (I understand this, I need help...
A car of mass 950 kg travelling north at 50 km/h collides with a car of...
A car of mass 950 kg travelling north at 50 km/h collides with a car of mass 1350 kg going south at 45 km/h in a completely inelastic collision (i.e. they stick together). Determine the velocity of the car/car combination immediately after the collision. (North is the positive direction and south is the negative direction.) km/h
An unstable nucleus of mass 2.1 ? 10?26 kg, initially at rest at the origin of...
An unstable nucleus of mass 2.1 ? 10?26 kg, initially at rest at the origin of a coordinate system, disintegrates into three particles. One particle, having a mass of m1 = 4.6 ? 10?27 kg, moves in the positive y-direction with speed v1 = 6.1 ? 106 m/s. Another particle, of mass m2 = 8.5 ? 10?27 kg, moves in the positive x-direction with speed v2 = 4.5 ? 106 m/s. Find the magnitude and direction of the velocity of...
An unstable nucleus of mass 1.7 ✕ 10−26 kg, initially at rest at the origin of...
An unstable nucleus of mass 1.7 ✕ 10−26 kg, initially at rest at the origin of a coordinate system, disintegrates into three particles. One particle, having a mass of m1 = 2.6 ✕ 10−27 kg, moves in the positive y-direction with speed v1 = 5.4 ✕ 106 m/s. Another particle, of mass m2 = 8.0 ✕ 10−27 kg, moves in the positive x-direction with speed v2 = 3.4 ✕ 106 m/s. Find the magnitude and direction of the velocity of...
A car of mass 1478 kg collides head-on with a parked truck of mass 2000kg. Spring...
A car of mass 1478 kg collides head-on with a parked truck of mass 2000kg. Spring mounted bumpers ensure that the collision is essentially elastic. If the velocity of the truck is 17 km/h (in the same direction as the car's initial velocity) after the collision, what is the initial speed of the car?
a 1.5 kg car (1) initially moving at 4.0 m/s to the right collides with a...
a 1.5 kg car (1) initially moving at 4.0 m/s to the right collides with a 2.0 kg car (2) initially moving at 2.0 m/s to the left. After the inelastic collision, car 1 is moving to the left at 1.2 m/s A) What is the velocity and direction of car 2 after the collision? B) What is the change in total kinetic energy and the percentage of initial kinetic energy remaining after the collision?
1. A 1000.0 kg car is moving at 20 km/h. If a 2000.0 kg truck has...
1. A 1000.0 kg car is moving at 20 km/h. If a 2000.0 kg truck has 25 times the kinetic energy of the car, how fast is the truck moving? 2. A car of mass 1005 kg collides head-on with a parked truck of mass 2010 kg. Spring mounted bumpers ensure that the collision is essentially elastic. If the velocity of the truck is 15 km/h (in the same direction as the car's initial velocity) after the collision, what was...
A curling stone of mass 20 kg and initially traveling at 2.0 m/s collides head-on with...
A curling stone of mass 20 kg and initially traveling at 2.0 m/s collides head-on with a lighter stone of mass 15 kg which is initially at rest. After the collision the struck stone has a speed of 1.6 m/s in the same direction as the initial velocity of the heavy stone. a) What is the final velocity of the heavy stone? b) Is this collision elastic? Explain. If the collision is not elastic, find the macroscopic energy lost in...
A mass of 3 kg is initially moving in the +x direction and collides inelastically with...
A mass of 3 kg is initially moving in the +x direction and collides inelastically with a mass of 10 kg moving in the -x direction at 2 m/s. After the collision, both masses move in the +x direction at 4 m/s. How much kinetic energy is lost in the collision in Joules? Answer is positive
A neutron collides elastically with a helium nucleus (at rest initially) whose mass is four times...
A neutron collides elastically with a helium nucleus (at rest initially) whose mass is four times that of the neutron. The helium nucleus is observed to rebound at an angle '2 = 42° from the neutron's initial direction. The neutron's initial speed is 6.8 105 m/s. a. Determine the angle at which the neutron rebounds, '1, measured from its initial direction. (in degrees) b. What is the speed of the neutron after the collision? c. What is the speed of...