Question

A 0.62 kg car slides 0.24 m down a frictionless ramp at an angle of 30...

A 0.62 kg car slides 0.24 m down a frictionless ramp at an angle of 30 degrees. It travels across a frictionless surface and into a spring with k = 55 N/m.

Determine the maximum acceleration of the toy car after it hits the spring.

Homework Answers

Answer #1

v=sqrt(2gh)

v is the final velocity on hitting the spring

sqrt denotes square root

g is the acceleration due to gravity

h is the height from which the car was released.

We can use this equation as the car is frictionless

h=Sin(30 degrees) x 0.24 = 0.12 m

v=1.53 m/s

this kinetic energy is converted to potential energy in spring

0.5 m v2= 0.5 k x2 ( we can even work without finding v, use mgh=0.5 k x2 )

0.62 x (1.53 x 1.53) = 55 x2

x=0.16m

Now

F=-kx

so

m a = -55 x 0.16

a=-55x0.16/0.62

a=-14.19 m/s2

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A.Your mass m=11 kg block slides down a frictionless ramp having angle theta=0.51 radians to the...
A.Your mass m=11 kg block slides down a frictionless ramp having angle theta=0.51 radians to the horizontal. After sliding down the ramp a distance L=16 m the block encounters a spring of spring constant k=551 N/m. The spring is parallel to the ramp. Use g=9.74 m/s/s for the acceleration of gravity. Calculate the maximum compression of the spring, in meters. Include labeled diagrams showing the initial and final configurations, and a discussion of the solution method based on energy conservation....
1. A 2 kg block is on a ramp, and slides down the ramp. The ramp...
1. A 2 kg block is on a ramp, and slides down the ramp. The ramp has angle 30 degrees with respect to the ground and moves the block at a constant velocity. The block has a displacement vector with a magnitude of 6 m. What is the work done on the block by thefrictional force? 2. A 0.2 kg block is on a ramp. The ramp has an angle of 30 degrees with respect to the ground. The block...
A block (4 kg) starts from rest and slides down a frictionless ramp #1 of height...
A block (4 kg) starts from rest and slides down a frictionless ramp #1 of height 9 m. The block then slides a horizontal distance of 1 m on a rough surface with kinetic coefficient of friction μk = 0.5. Next, it slides back up another frictionless ramp #2. Find the following numerical energy values: Initial gravitational potential energy on Ramp #1: U1G =  J Tries 0/3 Kinetic energy at bottom of Ramp #1 before traveling across the rough surface: K...
A 5.0 kg box slides down a 5.0 m high frictionless hill, starting from rest, across...
A 5.0 kg box slides down a 5.0 m high frictionless hill, starting from rest, across a 2.0 m wide horizontal surface, then hits a horizontal spring with spring constant 500 N/m. The ground under the spring is frictionless, but the 2.0 m wide horizontal surface is rough with a coefficient of kinetic friction of 0.25. a. What is the speed of the box just before reaching the rough surface? b. What is the speed of the box just before...
A 4.5 kg box slides down a 4.8-m -high frictionless hill, starting from rest, across a...
A 4.5 kg box slides down a 4.8-m -high frictionless hill, starting from rest, across a 2.0-m -wide horizontal surface, then hits a horizontal spring with spring constant 520 N/m . The other end of the spring is anchored against a wall. The ground under the spring is frictionless, but the 2.0-m-long horizontal surface is rough. The coefficient of kinetic friction of the box on this surface is 0.24. Part A What is the speed of the box just before...
A 1-kg block slides along frictionless surface XY with a velocity of v = 10 m/s....
A 1-kg block slides along frictionless surface XY with a velocity of v = 10 m/s. It then moves along a surface YZ with length 10 m, and uk = 0.2 until hitting an undeformed spring whose k = 1000 N/m. What is the block’s velocity just before it hits the spring? What will be the maximum compression of the spring? After leaving the spring, will the block reach surface XY? If yes, compute for the velocity of the block...
A 4.5 kg box slides down a 5.2-m -high frictionless hill, starting from rest, across a...
A 4.5 kg box slides down a 5.2-m -high frictionless hill, starting from rest, across a 2.2-m -wide horizontal surface, then hits a horizontal spring with spring constant 550 N/m . The other end of the spring is anchored against a wall. The ground under the spring is frictionless, but the 2.2-m-long horizontal surface is rough. The coefficient of kinetic friction of the box on this surface is 0.27. Part A. What is the speed of the box just before...
A worker who is 1.5 m above the ground places a 50 kg crate on a...
A worker who is 1.5 m above the ground places a 50 kg crate on a curved, frictionless ramp. After sliding down the ramp, the crate slides for 5 m across a rough section of floor whose coefficients of kinetic and static friction between the crate and ramp are 0.17 and 0.20, respectively.  After this, the crate strikes a bumper that acts as an ideal spring with spring constant 1500 N/m. a) What is the speed of the crate just before...
A 4.5 kg box slides down a 5.2-m -high frictionless hill, starting from rest, across a...
A 4.5 kg box slides down a 5.2-m -high frictionless hill, starting from rest, across a 1.6-m -wide horizontal surface, then hits a horizontal spring with spring constant 540 N/m . The other end of the spring is anchored against a wall. The ground under the spring is frictionless, but the 1.6-m-long horizontal surface is rough. The coefficient of kinetic friction of the box on this surface is 0.27 What is the speed of the box just before reaching the...
A 30-kg crate starts from rest, slides down a frictionless incline and then along a rough...
A 30-kg crate starts from rest, slides down a frictionless incline and then along a rough horizontal surface until it comes to rest. The coefficient of kinetic friction between the horizontal surface and the crate is 0.27. If the crate’s initial height is 9 m, find the distance it travels on the horizontal surface.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT