Question

if you design an Einzel Lens, a. How would the magnitude of the electric field impact...

if you design an Einzel Lens,

a. How would the magnitude of the electric field impact the ion trajectory?

b. How would the length of each shell impact the ion trajectory? If we were to make it longer, what would happen?

c. How would the radius impact the ion trajectory?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An unknown positive charge produces an electric field with a magnitude of 0.005 N/C. If the...
An unknown positive charge produces an electric field with a magnitude of 0.005 N/C. If the unknown charge is made negative, how does the electric field change? An negative test charge is placed next to each charge. What will happen to the test charge in each case. Why?
Consider the mass spectrometer shown schematically in the figure below. The magnitude of the electric field...
Consider the mass spectrometer shown schematically in the figure below. The magnitude of the electric field between the plates of the velocity selector is  2.40 * 10 3  V/m, and the magnetic field in both the velocity selector and the deflection chamber has a magnitude of 0.0400 T. Calculate the radius of the path for a singly charged ion having a mass m= 6.34  * 10 -26 kg. a. 0.718 b. 0.236 c. None of the given answers d. 0.401 e. 0.594
A dipole of moment 0.5 e·nm is placed in a uniform electric field with a magnitude...
A dipole of moment 0.5 e·nm is placed in a uniform electric field with a magnitude of 9 * 104 N/C. What is the magnitude of the torque on the dipole when (a) the dipole is parallel to the electric field, (b) the dipole is perpendicular to the electric field, and (c) the dipole makes an angle of 30 degrees with the electric field? (d) Find the potential energy of the dipole in the electric field for each case. theta...
An electric field E exerts a force F on an ion of charge q. At right...
An electric field E exerts a force F on an ion of charge q. At right angles to the electric field is a magnetic field B. a. Write an equation for the speed of the ion if the electric and magnetic forces are equal and opposite. b. Calculate the speed if the charge of the ion is 1.6E-19 C, the electric field is 6.0E6 N/C, and the magnetic field is 0.83 T. c. If the charge were twice as great,...
Ten years ago, the magnitude of the electric field of the electromagnetic waves produced by a...
Ten years ago, the magnitude of the electric field of the electromagnetic waves produced by a particular microwave oven was Eo. Today, the oven outputs only half the electric field (in amplitude) it used to. The amount of time it takes to cook things in the microwave is proportional to the intensity of the waves. How much longer does it take to cook things in this microwave oven now, compared with the time it took 10 years ago? HINT: Think...
The surface of a circular disk is charged uniformly. The magnitude of the electric field produced...
The surface of a circular disk is charged uniformly. The magnitude of the electric field produced by the disk on the surface is measured 3.00×105 N/C at its center. a.) Find the surface charge density of the disk. b.) At the point on the central axis perpendicular to the disk, 10.0 cm away from the center of the disk, the magnitude of the electric field is measured 1.00×105 N/C. Estimate the total charge of the disk. c.) Find the magnitude...
Faraday's law states that a changing magnetic field will create an electric field that curls around...
Faraday's law states that a changing magnetic field will create an electric field that curls around the magnetic field. To quantify this, we use the expression of flux (Φ) which is the magnetic field strength multiplied by the area (A) it’s passing through. This is given by: Φ = ?? The electric field is applied to the outside edge of this area. This created an electric potential that is referred to as an electro-motive force (EMF, ε). Faraday’s law can...
The electric field on the axis of a uniformly charged ring has magnitude 360 kN/C at...
The electric field on the axis of a uniformly charged ring has magnitude 360 kN/C at a point 6.6 cm from the ring center. The magnitude 16 cm from the center is 150 kN/C ; in both cases the field points away from the ring. A) What is the Radius of the ring? B) What is the charge of the ring? Please show your work
A beam of electrons is shot into a uniform downward electric field of magnitude 1.10 103...
A beam of electrons is shot into a uniform downward electric field of magnitude 1.10 103 N/C. The electrons have an initial velocity of 1.01 107 m/s, directed horizontally. The field acts over a small region, 5.00 cm in the horizontal direction. (a) Find the magnitude and direction of the electric force exerted on each electron. (b) How does the gravitational force on an electron compare with the electric force? (c) How far has each electron moved in the vertical...
1. An electric dipole located in an electric field directed to the right. The magnitude of...
1. An electric dipole located in an electric field directed to the right. The magnitude of the charge on each particle of the dipole is 4 nC, the distance between the particles is 5cm, the angle α = 35o, and the magnitude of the electric filed is 50 N/C . a) (5 pts) Draw forces acting on charges in the diagram above and find the net force acting on the dipole b) (5 pts) What is the dipole moment of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT