Question

A rifle bullet with mass 8.00 g strikes and embeds itself in a block with a...

A rifle bullet with mass 8.00 g strikes and embeds itself in a block with a mass of 0.992 kg that rests on a frictionless, horizontal surface and is attached to a coil spring. (See (Figure 1).) The impact compresses the spring 15.0 cm . Calibration of the spring shows that a force of 0.650 N is required to compress the spring 0.200 cm .

Find the magnitude of the block's velocity just after impact (m/s)

What was the initial speed of the bullet (m/s)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A rifle bullet with mass 15.0 g strikes and embeds itself in a block of mass...
A rifle bullet with mass 15.0 g strikes and embeds itself in a block of mass 1.500 kg that rests on a frictionless, horizontal surface and is attached to a coil spring. The spring was relaxed at the beginning. The spring constant is 550 N/m. The initial velocity of the bullet was 700 m/s. The impact compresses the spring by x (see figure below). 1) Find the magnitude of the block's velocity (with the bullet stuck inside) after the impact...
A 10.0-g bullet is fired into, and embeds itself in, a 1.85-kg block attached to a...
A 10.0-g bullet is fired into, and embeds itself in, a 1.85-kg block attached to a spring with a force constant of 22.4 N/m and whose mass is negligible. How far is the spring compressed if the bullet has a speed of 300 m/s just before it strikes the block and the block slides on a frictionless surface? Note: You must use conservation of momentum in this problem because of the inelastic collision between the bullet and block. (No Response)...
A 8.00 g bullet traveling at 515 m/s embeds itself in a 1.57 kg wooden block...
A 8.00 g bullet traveling at 515 m/s embeds itself in a 1.57 kg wooden block at rest on a frictionless surface. The block is attached to a spring with k = 82.0 N/m. Part A) Find the period. Part B) Find the amplitude of the subsequent simple harmonic motion. Part C) Find the total energy of the bullet + block + spring system before the bullet enters the block. Part D) Find the total energy of the bullet +...
A bullet with mass 25 g and initial horizontal velocity 320 m/s strikes a block of...
A bullet with mass 25 g and initial horizontal velocity 320 m/s strikes a block of mass 2 kg that rests on a frictionless surface and is attached to one end of a spring. The bullet becomes embedded in the block. The other end of the spring is attached to the wall. The impact compress the spring a maximum distance of 25 cm . After the impact, the block moves in simple harmonic motion. 1. What is the frequency of...
A bullet of mass 1.4×10−3 kg embeds itself in a wooden block with mass 0.987 kg...
A bullet of mass 1.4×10−3 kg embeds itself in a wooden block with mass 0.987 kg , which then compresses a spring (k = 130 N/m ) by a distance 5.5×10−2 m before coming to rest. The coefficient of kinetic friction between the block and table is 0.46. a)What is the initial speed of the bullet? b)What fraction of the bullet's initial kinetic energy is dissipated (in damage to the wooden block, rising temperature, etc.) in the collision between the...
A bullet of mass 2.0×10−3 kg embeds itself in a wooden block with mass 0.991 kg...
A bullet of mass 2.0×10−3 kg embeds itself in a wooden block with mass 0.991 kg , which then compresses a spring (k = 200 N/m ) by a distance 3.5×10−2 m before coming to rest. The coefficient of kinetic friction between the block and table is 0.52. a)What is the initial speed of the bullet? b)What fraction of the bullet's initial kinetic energy is dissipated (in damage to the wooden block, rising temperature, etc.) in the collision between the...
A bullet of mass m = 2.40×10-2 kg is fired along an incline and embeds itself...
A bullet of mass m = 2.40×10-2 kg is fired along an incline and embeds itself quickly into a block of wood of mass M = 1.35 kg. The block and bullet then slide up the incline, assumed frictionless, and rise to a height H = 1.35 m before stopping. Calculate the speed of the bullet just before it hits the wood.
A bullet with a mass ?b=12.7 g is fired into a block of wood at velocity...
A bullet with a mass ?b=12.7 g is fired into a block of wood at velocity ?b=261 m/s. The block is attached to a spring that has a spring constant ? of 205 N/m. The block and bullet continue to move, compressing the spring by 35.0 cm before the whole system momentarily comes to a stop. Assuming that the surface on which the block is resting is frictionless, determine the mass of the wooden block.
A bullet with a mass m_b=11.5 g is fired into a block of wood at velocity...
A bullet with a mass m_b=11.5 g is fired into a block of wood at velocity v_b=265 m/s. The block is attached to a spring that has spring constant k of 205 N/m. The block and bullet continue to move, compressing the spring by 35.0 cm before the whole system momentarily comes to a stop. Assuming that the surface on which the block is resting is frictionless, determine the mass of the wooden block.
A bullet with a mass ?b=12.3 g is fired into a block of wood at velocity...
A bullet with a mass ?b=12.3 g is fired into a block of wood at velocity ?b=261 m/s. The block is attached to a spring that has a spring constant ? of 205 N/m. The block and bullet continue to move, compressing the spring by 35.0 cm before the whole system momentarily comes to a stop. Assuming that the surface on which the block is resting is frictionless, determine the mass of the wooden block.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT