Question

Coulomb's law for the magnitude of the force F between two particles with charges Q and...

Coulomb's law for the magnitude of the force F between two particles with charges Q and Q′ separated by a distance d is

|F|=K |QQ'|/d2

where K=1/4πϵ0 , and ϵ0=8.854×10-12 C2/(N⋅m2) is the permittivity of free space.

Consider two point charges located on the x axis: one charge, q1 = -17.0 nCn, is located at X1 = -1.680 m ; the second charge, q2 = 30.0 nC , is at the origin (x = 0).

What is (Fnet3)x, the x-component of the net force exerted by these two charges on a third charge q3= 53.0 nC placed between q1 and q2 at X3 = -1.165 mm ?

Your answer may be positive or negative, depending on the direction of the force.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Coulomb's law for the magnitude of the force F between two particles with charges Q and...
Coulomb's law for the magnitude of the force F between two particles with charges Q and Q′separated by a distance d is |F|= (K) |QQ′| / d2 where K=1 / 4πϵ0, and ϵ0=8.854×10−12  C2 / (N⋅m2) is the permittivity of free space. Consider two point charges located on the x axis: one charge, q1 = -13.5 nC , is located at x1 = -1.745 m ; the second charge, q2 = 31.5 nC ,is at the origin (x=0.0000). What is the...
Coulomb's law for the magnitude of the force F between two particles with charges Q and...
Coulomb's law for the magnitude of the force F between two particles with charges Q and Q′ separated by a distance d is |F|=K|QQ′|d2, where K=14πϵ0, and ϵ0=8.854×10−12C2/(N⋅m2) is the permittivity of free space. Consider two point charges located on the x axis: one charge, q1 = -10.0 nC , is located at x1 = -1.695 m ; the second charge, q2 = 31.0 nC , is at the origin (x=0.0000). What is the net force exerted by these two...
Coulomb's law for the magnitude of the force F between two particles with charges  Q and  Q′ separated...
Coulomb's law for the magnitude of the force F between two particles with charges  Q and  Q′ separated by a distance d is |F|=K|QQ′|d2, where K=14πϵ0, and ϵ0=8.854×10−12C2/(N⋅m2) is the permittivity of free space. Consider two point charges located on the x axis: one charge, q1 = -14.5 nC , is located at x1 = -1.655 m ; the second charge, q2 = 33.5 nC , is at the origin (x=0.0000). What is the net force exerted by these two charges on...
Coulomb's law for the magnitude of the force F between two particles with charges Q and...
Coulomb's law for the magnitude of the force F between two particles with charges Q and Q′ separated by a distance d is |F|=K(|QQ′|/d^2) where K=1/(4πϵ0), and ϵ0=8.854×10^−12 C^2/(N⋅m^2) is the permittivity of free space. Consider two point charges located on the x axis: one charge, q1 = -17.5 nC , is located at x1= -1.735 mm ; the second charge, q2 = 36.5 nC , is at the origin (x = 0). What is (Fnet3)x, the x-component of the...
Coulomb's law for the magnitude of the force Fbetween two particles with charges Q and Q′separated...
Coulomb's law for the magnitude of the force Fbetween two particles with charges Q and Q′separated by a distance d is |F|=K|QQ′|/d^2, where K=1/4πϵ0, and ϵ0=8.854×10^−12C^2/(N⋅m^2) is the permittivity of free space. Consider two point charges located on the x axis: one charge, q1 = -19.0 nC , is located at x1 = -1.665 m ; the second charge, q2 = 36.0 nC ,is at the origin (x=0.0000). What is the net force exerted by these two charges on a...
Coulomb's law for the magnitude of the force F FF between two particles with charges Q...
Coulomb's law for the magnitude of the force F FF between two particles with charges Q QQ and Q ′ Q′Q^\prime separated by a distance d dd is |F|=K |Q Q ′ | d 2 |F|=K|QQ′|d2 , where K= 1 4π ϵ 0 K=14πϵ0 , and ϵ 0 =8.854× 10 −12 C 2 /(N⋅ m 2 ) ϵ0=8.854×10−12C2/(N⋅m2) is the permittivity of free space. Consider two point charges located on the x axis: one charge, q 1 q1q_1 = -20.0...
Coulomb's law for the magnitude of the force FF between two particles with charges QQ and...
Coulomb's law for the magnitude of the force FF between two particles with charges QQ and Q′Q′ separated by a distance dd is |F|=K|QQ′|d2|F|=K|QQ′|d2, where K=14πϵ0K=14πϵ0, and ϵ0=8.854×10−12C2/(N⋅m2)ϵ0=8.854×10−12C2/(N⋅m2) is the permittivity of free space. Consider two point charges located on the x axis: one charge, q1q1 = -13.0 nCnC , is located at x1x1 = -1.670 mm ; the second charge, q2q2 = 39.0 nCnC , is at the origin (xx = 0). What is (Fnet3)x(Fnet3)x, the x-component of the...
Consider two point charges located on the x axis: one charge, q1 = -19.5 nC ,...
Consider two point charges located on the x axis: one charge, q1 = -19.5 nC , is located at x1 = -1.720 m ; the second charge, q2 = 30.0 nC , is at the origin (x=0.0000). What is the net force exerted by these two charges on a third charge q3 = 48.5 nC placed between q1 and q2 at x3 = -1.180 m ?
Two test charges are located in the x–y plane. If q1=−3.05 nC and is located at...
Two test charges are located in the x–y plane. If q1=−3.05 nC and is located at x1=0.00 m, y1=0.640 m, and the second test charge has magnitude of q2=3.80 nC and is located at x2=1.50 m, y2=0.800 m, calculate the x and y components, Exand Ey, of the electric field →E in component form at the origin, (0,0). The Coulomb force constant is 1/(4πϵ0)=8.99×109 N⋅m2/ C2.
What is the net force exerted by these two charges on a third charge q3 =...
What is the net force exerted by these two charges on a third charge q3 = 50.0 nC placed between q1 and q2 at x3 = -1.120 m ? Consider two point charges located on the x axis: one charge, q1 = -16.0 nC , is located at x1 = -1.690 m ; the second charge, q2 = 38.5 nC , is at the origin (x=0.0000). Your answer may be positive or negative, depending on the direction of the force....