Question

A power plant engineer states that his/her power plant absorbs 100 MW heat from burning coal...

A power plant engineer states that his/her power plant absorbs 100 MW heat from burning coal at 1000 K, produces 60 MW work and rejects 40 MW heat in a condenser at 300K. The pressure of steam in the boiler and condenser is 5 MPa and 100 kPa, respectively. Please calculate the total entropy generated in this case.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a cogeneration power plant that is modified with reheat and that produces 3 MW of...
Consider a cogeneration power plant that is modified with reheat and that produces 3 MW of power and supplies 7 MW of process heat. Steam enters the high pressure turbine at 8 MPa and 500 C and expands to a pressure of 1 MPa. At this pressure, part of the steam is extracted from the turbine and routed to the process heater, while the remainder is reheated to 500 C and expanded in the low pressure turbine to the condenser...
In a steam power plant which has a net power output of 45 MW, steam is...
In a steam power plant which has a net power output of 45 MW, steam is supplied at 10 MPa and 500°C. The steam is reheated after passing through high pressure turbine to its original temperature at a pressure of 1 MPa. Then the steam expanded to condenser pressure. The condenser pressure is 5 kPa. Show the cycle on a T-s diagram with respect to saturation lines, and determine; (i) the thermal efficiency of the cycle; and (ii) the mass...
A coal-burning power plant that uses an evaporating water tower to cool the generated steam has...
A coal-burning power plant that uses an evaporating water tower to cool the generated steam has the following characteristics: uses about 2,000 metric tons/day of bituminous coal, has an overall efficiency of 35% in converting the energy from the combustion of coal to electricity, and 10% of the heat energy produced is lost to the surrounding environment as hot air through the chimney of the plant (stack). Determine how much water is required to run the plant, i.e., to cool...
A typical coal-fired power plant generates 1000 MW of usable power at an overall thermal efficiency...
A typical coal-fired power plant generates 1000 MW of usable power at an overall thermal efficiency of 40%. PART A: What is the rate of heat input to the plant? Answer in MW PART B: The plant burns anthracite coal, which has a heat of combustion of 2.65×107J/kg. How much coal does the plant use per day, if it operates continuously? Answer in kg PART C: At what rate is heat ejected into the cool reservoir, which is the nearby...
A chemical engineer injects limestone into the hot flue gas of a coal burning power plant...
A chemical engineer injects limestone into the hot flue gas of a coal burning power plant to form lime, which scrubs SO2 from the gas and forms gypsum (CaSO4.2H2O). Find Kc for the following reaction CaCO3(s) <--> CaO(s) + CO2(g) if the value for Kp at 1000 K is 2.1*10^-4
A power plant operates on a regenerative vapor power cycle with one open feedwater heater. Steam...
A power plant operates on a regenerative vapor power cycle with one open feedwater heater. Steam enters the first turbine stage at 12 MPa, 560°C and expands to 1 MPa, where some of the steam is extracted and diverted to the open feedwater heater operating at 1 MPa. The remaining steam expands through the second turbine stage to the condenser pressure of 17 kPa. Saturated liquid exits the open feedwater heater at 1 MPa. The net power output for the...
A steam power plant runs on a reheat Rankine cycle. Steam enters both the high and...
A steam power plant runs on a reheat Rankine cycle. Steam enters both the high and low pressure turbines at 500oC. The maximum and minimum pressures of the cycle are 10 MPa and 10 kPa, respectively. Steam leaves the condenser as a saturated liquid. The moisture content of the steam at the exit of the low-pressure turbine is 4% if the actual expansion process is adiabatic; 8.5% if the ideal expansion process is isentropic. The isentropic efficiencies of the high-pressure...
A nuclear power plant generates 3000 MW of heat energy from nuclear reactions in the reactor's...
A nuclear power plant generates 3000 MW of heat energy from nuclear reactions in the reactor's core. This energy is used to boil water and produce high-pressure steam at 300?C . The steam spins a turbine, which produces 900MW of electric power, then the steam is condensed and the water is cooled to 25?C before starting the cycle again. A) What is the maximum possible thermal efficiency of the power plant? Express your answer using two significant figures. B) Cooling...
Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters...
Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10 MPa and 500°C and is cooled in the condenser at a pressure of 7.5 kPa. a.)Determine the quality of the steam at the turbine exit. Use steam tables. b.)Determine the thermal efficiency of the cycle. c.)Determine the mass flow rate of the steam
A power plant using an ideal Rankine power generation cycle operates at an efficiency of 55%...
A power plant using an ideal Rankine power generation cycle operates at an efficiency of 55% with a flowrate of steam of 2 kg/s.  Heat is supplied to the boiler of 2500 kJ/kg. The pump takes in saturated liquid water at 100 kPa and has an exit pressure of 10 MPa.  Determine: the exit temperature of the pump (oC)  (3 pts) the work of the turbine (kW) (3 pts) the heat exhausted from the condenser (kJ/s) (3 pts)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT