Question

The specific heat of water in its solid phase (ice) is 2090 J/(kg K), while in...

The specific heat of water in its solid phase (ice) is 2090 J/(kg K), while in the liquid phase (water) its specific heat is 4190 J/(kg K). Water's latent heat of fusion is 333,000 J/kg.

If you have a 2kg block of ice at -90 degrees C and you add 1,000,000 J of heat, what is its new temperature?

Homework Answers

Answer #1

Solution :

Given :

mass (m) = 2 kg

Ti = - 90oC

Cice = 2090 J/kg K

Cwater = 4190 J/kg K

Lfusion = 333,000 J/kg

and, Q = 1,000,000 J

.

Since, Q = m Cice (90) + m Lfusion + m Cwater (Tf)

1,000,000 J = (2 kg)(2090 J/kg K)(90) + (2 kg)(333,000 J/kg) + (2 kg)(4190 J/kg K) Tf

1,000,000 J = (376200 J) + (666000 J) + (8380) Tf

(8380)Tf = - 42200 J

Which means that the given  1,000,000 J of heat can not melt all the ice.

Thus the final temperature will be : 0 oC

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
How much heat must be removed to make ice at -10 degrees C from 2kg of...
How much heat must be removed to make ice at -10 degrees C from 2kg of water at 20 degrees C (The latent heat of fusion for water is.25X10^5 J/kg. The specific heat of water is 4190 J/kg K and for ice is 2090 J/kg K.) a. 7.95 X10^5 b. 8.37 X10^5 c.8.75 X10^5 d. 2.09x10^5
A 60 kg block of ice begins at -60 degrees the specific heat of ice is...
A 60 kg block of ice begins at -60 degrees the specific heat of ice is 2090 j/(kg)C. The latent heat of fusion of water is 3.3 x 10^5 and the latent heat of vaporization is 2.3 x 10^6 J/kg. How much energy is required to heat the ice to 0 degrees Celcius (melting point)? How much energy is required to heat the ice from -50C to the melting point and melt the ice? How much energy is required to...
An insulated beaker with negligible mass contains liquid water with a mass of 0.290 kg and...
An insulated beaker with negligible mass contains liquid water with a mass of 0.290 kg and a temperature of 72.4 degrees C. How much ice at a temperature of -11.2 degrees C must be dropped into the water so that the final temperature of the system will be at 33.0 degrees C? Take the specific heat of liquid water to be at 4190 J/kg • K, the specific heat of ice to be 2100 J/kg • K, and the heat...
An insulated beaker with negligible mass contains liquid water with a mass of 0.225 kg and...
An insulated beaker with negligible mass contains liquid water with a mass of 0.225 kg and a temperature of 68.8 ∘C . Take the specific heat of liquid water to be 4190 J/kg⋅K , the specific heat of ice to be 2100 J/kg⋅K , and the heat of fusion for water to be 3.34×105 J/kg . How much ice at a temperature of -15.3 ∘C∘C must be dropped into the water so that the final temperature of the system will...
A 31 g block of ice is cooled to −90◦C. It is added to 591 g...
A 31 g block of ice is cooled to −90◦C. It is added to 591 g of water in an 65 g copper calorimeter at a temperature of 26◦C. Find the final temperature. The specific heat of copper is 387 J/kg · ◦C and of ice is 2090 J/kg · ◦C . The latent heat of fusion of water is 3.33 × 105 J/kg and its specific heat is 4186 J/kg · ◦C . Answer in units of ◦C.
Adding Ice to Water An insulated beaker with negligible mass contains liquid water with a mass...
Adding Ice to Water An insulated beaker with negligible mass contains liquid water with a mass of 0.340 kg and a temperature of 66.3 ∘C . How much ice at a temperature of -17.9 ∘C must be dropped into the water so that the final temperature of the system will be 22.0 ∘C ? Take the specific heat of liquid water to be 4190 J/kg⋅K , the specific heat of ice to be 2100 J/kg⋅K , and the heat of...
Calculate the amount of heat energy required to change 0.173 kg of ice at a temperature...
Calculate the amount of heat energy required to change 0.173 kg of ice at a temperature of -35 �C to steam at a temperature of 160 �C. (specific heat capacities of ice, water and steam are 2090, 4180, 2010 J ⁄ kg ⁄ �C respectively. Latent heat of fusion and vaporization of water are 3.34e5, 2.26e6 J ⁄ kg respectively.)
How much heat is required to change m=1kg of ice at -6°C into water at 60°C?...
How much heat is required to change m=1kg of ice at -6°C into water at 60°C? cw= 4190 J/kg*K (specific heat of water), Lf= 333 kJ/kg (latent heat of fusion of ice), cice= 2100 J/kg*K
At 0°C the latent heat of the ice<-->liquid transition is 3.34 × 105 J/kg. Clean water...
At 0°C the latent heat of the ice<-->liquid transition is 3.34 × 105 J/kg. Clean water can be cooled a few degrees below 0°C without freezing on an ordinary time-scale, even though ice would have lower G. This non-equilibrium liquid state typically remains until some disturbance (e.g. a bubble) triggers the freezing. 1) What is the entropy difference between 4 kg of liquid water and 4 kg of ice at 0°C? 2) The specific heat of liquid water is cpw=...
8.33 kg of steam at temperature of 150 ∘C has 2.23×107 J of heat removed from...
8.33 kg of steam at temperature of 150 ∘C has 2.23×107 J of heat removed from it. Determine the final temperature and phase of the result once the heat has been removed if the heat is removed at constant pressure during the gas phase. For this problem, use the specific heat (at constant pressure) for water as 1850 J/kg∘C , the latent heat of vaporization as 2.256×106 J/kg , the specific heat of liquid water as 4186 J/kg∘C , the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT