Question

An object with a mass of 500 kg is orbiting planet X with a speed of...

An object with a mass of 500 kg is orbiting planet X with a speed of 1540 m/s. Planet X has a mass of 1.35 x 1023 kg and a radius of 2.58 x 106 m. Calculate the height of the object above the surface of planet X. G = 6.67 x 10-11 Nm2/kg2.

express your answer with the appropriate units.

What is the gravitational force experienced by the object due to planet X. G = 6.67 x 10-11 Nm2/kg2.

experss your answer with the correct units

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose a 1300-kg Tesla ends up orbiting some faraway planet of mass 2.8 * 1024 kg....
Suppose a 1300-kg Tesla ends up orbiting some faraway planet of mass 2.8 * 1024 kg. If that planet's radius is 6,200 km, and if the Tesla arrived with a velocity relative to the planet of 5,200 m/s, and if the orbit were circular, how high above the planet's ground, in kilometers, would the Tesla orbit? use G = 6.674*10-11 Nm2/kg2
A satellite (mass 2400 kg) is orbiting the Earth, with a speed of 7500 m/s. What...
A satellite (mass 2400 kg) is orbiting the Earth, with a speed of 7500 m/s. What is the height of this satellite above the Earth's surface? Note: you may find the following information useful. The universal gravitational constant is 6.67x10-11 Nm2/kg2 ; the mass of the Earth is 6.0 x 1024 kg; the radius of the Earth is 6.4 x 103 km. can you please show work if you can? I APPRECIATE YOU!!!
(TWO PARTS) The small spherical planet called "Glob" has a mass of 7.46×1018 kg and a...
(TWO PARTS) The small spherical planet called "Glob" has a mass of 7.46×1018 kg and a radius of 6.41×104 m. An astronaut on the surface of Glob throws a rock straight up. The rock reaches a maximum height of 1.56×103 m, above the surface of the planet, before it falls back down. What was the initial speed of the rock as it left the astronaut's hand? (Glob has no atmosphere, so no energy is lost to air friction. G =...
The small spherical planet called "Glob" has a mass of 7.56×1018 kg and a radius of...
The small spherical planet called "Glob" has a mass of 7.56×1018 kg and a radius of 6.44×104 m. An astronaut on the surface of Glob throws a rock straight up. The rock reaches a maximum height of 1.36×103 m, above the surface of the planet, before it falls back down. What was the initial speed of the rock as it left the astronaut's hand? (Glob has no atmosphere, so no energy is lost to air friction. G = 6.67×10-11 Nm2/kg2.)...
a)The small spherical planet called "Glob" has a mass of 8.42×1018 kg and a radius of...
a)The small spherical planet called "Glob" has a mass of 8.42×1018 kg and a radius of 6.41×104 m. An astronaut on the surface of Glob throws a rock straight up. The rock reaches a maximum height of 1.96×103 m, above the surface of the planet, before it falls back down. What was the initial speed of the rock as it left the astronaut's hand? (Glob has no atmosphere, so no energy is lost to air friction. G = 6.67×10-11 Nm2/kg2.)...
1) The small spherical planet called "Glob" has a mass of 7.72×1018 kg and a radius...
1) The small spherical planet called "Glob" has a mass of 7.72×1018 kg and a radius of 6.17×104 m. An astronaut on the surface of Glob throws a rock straight up. The rock reaches a maximum height of 2.04×103 m, above the surface of the planet, before it falls back down. What was the initial speed of the rock as it left the astronaut's hand? (Glob has no atmosphere, so no energy is lost to air friction. G = 6.67×10-11...
A satellite of mass 1525 kg is in circular orbit around Earth. The radius of the...
A satellite of mass 1525 kg is in circular orbit around Earth. The radius of the orbit of the satellite is equal to 1.5 times the radius of Earth (RE = 6.378*106 m, ME = 5.98*1024 kg, G = 6.67*10-11 Nm2/kg2). (a) Find the orbital period of the satellite? (b) Find the orbital (tangential) velocity of the satellite.  (c) Find the total energy of the satellite?
1.Zero, a hypothetical planet, has a mass of 4.9 x 1023 kg, a radius of 3.3...
1.Zero, a hypothetical planet, has a mass of 4.9 x 1023 kg, a radius of 3.3 x 106 m, and no atmosphere. A 10 kg space probe is to be launched vertically from its surface. (a) If the probe is launched with an initial kinetic energy of 5.0 x 107 J, what will be its kinetic energy when it is 4.0 x 106 m from the center of Zero? (b) If the probe is to achieve a maximum distance of...
You Will need Radius of the Moon = 1.74 x 106 m Lunar Module Mass 5.56...
You Will need Radius of the Moon = 1.74 x 106 m Lunar Module Mass 5.56 x 103 kg G = 6.67 x 10-11 Nm2 / kg2 4. In Apollo's lunar program, the command module orbits the Moon, while the lunar module lands on the surface of the Moon. The command module's orbit was circular and was 110 km above the Moon's surface. The speed of the orbit was uniform and lasted 2.00 hours. Determine the centripetal force on the...
A planet has been discovered around a Sun-like star with an estimated mass of 54.3 times...
A planet has been discovered around a Sun-like star with an estimated mass of 54.3 times the Earth\'s mass and an estimated radius of 15.1 times the Earth\'s radius. It has been hypothesized that the planet has abundant hydrogen in its atmosphere. In order for the planet to maintain a hydrogen atmosphere for a significant amount of time, the planet\'s temperature must be less than some maximum temperature. Recall that the mass of Earth is 5.97 × 1024 kg and...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT