Question

The first-order principal maximum produced by a grating is located at an angle of θ =...

The first-order principal maximum produced by a grating is located at an angle of θ = 18.8 degrees. What is the angle for the third-order maximum with the same light?

Homework Answers

Answer #1

Hope you like my solution and my efforts :)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
monochromatic light is at normal incidence on a plane transmission grating. The first order maximum in...
monochromatic light is at normal incidence on a plane transmission grating. The first order maximum in the interference pattern is at an angle of 11.4 degrees. what is the angular position of the third order maximum? please give answer in units if degrees
A) At what angle will 650 nm light produce a first-order maximum when falling on a...
A) At what angle will 650 nm light produce a first-order maximum when falling on a grating whose slits are 1.94 × 10-3 cm apart? B) At what angle will 506 nm light produce a second-order maximum when falling on a grating whose slits are 1.09 × 10-3 cm apart? C) A grating that has 3,832 slits per cm produces a third-order fringe at a 20.9° angle. What wavelength of light is being used in nm?
A. A diffraction grating has 2400 lines per centimeter. At what angle in degrees will the...
A. A diffraction grating has 2400 lines per centimeter. At what angle in degrees will the first-order maximum be for 522 nm wavelength light? B. What is the wavelength of light (in nanometers) falling on double slits separated by 2.34 μm if the third-order maximum is at an angle of 62.5º? C. At what angle, in degrees, is the second minimum for 555 nm light falling on a single slit of width 2.35 μm ? D. Find the distance between...
Light of wavelength 570 nm illuminates a diffraction grating. The second-order maximum is at angle 41.5...
Light of wavelength 570 nm illuminates a diffraction grating. The second-order maximum is at angle 41.5 degrees. How many lines per millimeter does this grating have?
It is found that when blue light, λ = 470 nm, passes through a diffraction grating...
It is found that when blue light, λ = 470 nm, passes through a diffraction grating with a slit separation d, the diffraction pattern has a third order maximum at an angle θ = 44.8o. At what angle will red light, λ = 660 nm, have it's second order maximum when passed through the same diffraction grating. A. 29.4o B. 39.7o C. 41.3o D. 31.6o
How many lines per millimeter are there on a diffraction grating that gives a first-order maximum...
How many lines per millimeter are there on a diffraction grating that gives a first-order maximum for 470-nm blue light at an angle of 250 ? A) 900 lines/mm B) 111 lines/mm C) 8.99 X 105 lines/mm D)53,000 lines/mm
Monochromatic light at 577 nm illuminates a diffraction grating with 325 lines/mm. Determine (a) the angle...
Monochromatic light at 577 nm illuminates a diffraction grating with 325 lines/mm. Determine (a) the angle to the first - order maximum, (b) the highest order that can be observed with this grating at the given wavelength, and (c) the angle to this highest - order maximum
A-The first-order line of 584 nm light falling on a diffraction grating is observed at a...
A-The first-order line of 584 nm light falling on a diffraction grating is observed at a 16.6° angle. Calculate the number of lines per centimetre on the grating. B- At what angle will the second-order line be observed?
1. A diffraction grating is used to separate the spectral lines of light, emanating from a...
1. A diffraction grating is used to separate the spectral lines of light, emanating from a gas discharge tube (e.g., a neon light), that is normally incident on the grating. On a screen placed 2.0 m from the grating, the third-order (m = 3) interference maximum for violet light (λ = 4.4 × 10−7 m) is found to be 0.20 cm farther from the location of the central maximum (m = 0) on the screen than the second-order maximum of...
(a) If the third-order maximum for pure-wavelength light falling on a double slit is at an...
(a) If the third-order maximum for pure-wavelength light falling on a double slit is at an angle of 15.1°, at what angle (in degrees) is the seventh-order maximum? (b) What is the angle (in degrees) of the third minimum? (c) What is the highest-order maximum possible here?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT