Question

Discuss why a Neutron Star has a stable (constant) radius. What supports it against gravitational collapse?

Discuss why a Neutron Star has a stable (constant) radius. What supports it against gravitational collapse?

Homework Answers

Answer #1

Protons and neutrons are similar. Despite being composite particles, made up of three quarks apiece, they behave as single, individual fermions themselves. They, too, obey the Pauli Exclusion Principle, and no two protons or neutrons can occupy the same quantum state. The fact that electrons are fermions is what keeps white dwarf stars from collapsing under their own gravity; the fact that neutrons are fermions prevents neutron stars from collapsing further. The Pauli exclusion principle responsible for atomic structure is responsible for keeping the densest physical objects of all from becoming black holes.   

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Neutron Star Physics Under some circumstances, an ordinary star can undergo gravitational collapse into an extremely...
Neutron Star Physics Under some circumstances, an ordinary star can undergo gravitational collapse into an extremely dense object made mostly of neutrons. This type of star is called a "neutron star". A neutron star has a mass density roughly 1014 times larger than that of ordinary solid matter. Suppose we represent an ordinary star as a uniform solid rigid sphere, both before and after the collapse. The original star's initial radius is 7.0 x 105 km (comparable to the size...
A star may collapse into an extremely dense body (called neutron star ) composed predominantly of...
A star may collapse into an extremely dense body (called neutron star ) composed predominantly of neutrons. This can happen when massive stars die in supernovas and their cores collapse. Represent the star as a uniform solid sphere both before and after the collpase. Assume no astronomical bodies are in the vicinity of the star, so no forces or torques are exerted on the star. The star’s initial radius was 9.45 × 108 m, its final radius is 15200 m,...
Astronomers detect stars that are rotating extremely rapidly, known as neutron stars. A neutron star is...
Astronomers detect stars that are rotating extremely rapidly, known as neutron stars. A neutron star is believed to form from the inner core of a larder star that collapsed, under its own gravitation, to a star of very small radius and very high density. Before collapse, suppose the ore of such a star is the size of our Sun (R = 7105km)with mass 2.0 times as great as the Sun, and is rotating at a frequency of 1.0 revolution every...
A neutron star has a mass of 2.0 × 1030 kg (about the mass of our...
A neutron star has a mass of 2.0 × 1030 kg (about the mass of our sun) and a radius of 5.0 × 103 m (about the height of a good-sized mountain). Suppose an object falls from rest near the surface of such a star. How fast would this object be moving after it had fallen a distance of 0.017 m? (Assume that the gravitational force is constant over the distance of the fall and that the star is not...
Suppose that a neutron star has a radius of 14 km and a temperature of 1,000,000...
Suppose that a neutron star has a radius of 14 km and a temperature of 1,000,000 K. How luminous is it?
A typical neutron star may have a mass equal to that of the Sun but a...
A typical neutron star may have a mass equal to that of the Sun but a radius of only 12 km. (a) What is the gravitational acceleration at the surface of such a star? (b) How fast would an object be moving if it fell from rest through a distance of 1.5 m on such a star? (Assume the star does not rotate.)
Neutron stars are one of the possible “final states” of a star. The idea is that...
Neutron stars are one of the possible “final states” of a star. The idea is that for a sufficiently massive star, the gravitational pressure is enough to overcome the outward pressure (that comes from essentially the Pauli exclusion principle) that keeps fermions from coinciding with each other. Part A) According to quantum statistics, the OUTWARD pressure of a (neutron) fermionic gas is given by P=[(3.9?^2)/(2m)](N/V)^(5/3), where m is the mass of a neutron, and N/V is the number density of...
If both a neutron star and a white dwarf have a total mass of 1M®. If...
If both a neutron star and a white dwarf have a total mass of 1M®. If the radius of the white dwarf is 6 x 106 m and the neutron star has a radius of 8 km. What is the density of the neutron star? Compare the surface gravity of both stars? Assuming the neutron star is entirely made up of neutrons and the interparticle separation of a gas of density n is l ͌  n -1/3. How far apart are...
Consider a neutron star with a mass equal to 0.9 times the mass of the Sun,...
Consider a neutron star with a mass equal to 0.9 times the mass of the Sun, a radius of 15 km, and a rotation period of 1.3 s. What is the speed of a point on the equator of this neutron star? What is gg at the surface of this neutron star? A stationary 1.0 kg mass has a weight of 9.8 N on Earth. What would be its weight on the neutron star? How many revolutions per second are...
A certain star of radius 6.34 million meters, rotates twice around its axis in one earth...
A certain star of radius 6.34 million meters, rotates twice around its axis in one earth day. Find its angular frequency. This star has a mass of 1.00x1032 kg. When this star collapses to a neutron star, its radius shrinks by a factor of 104 while it loses 30% of its mass. Find the angular velocity of this star after the collapse. Assume that the spherical shape and density of the star remain unchanged . Find the speed and centripetal...