Question

An LL-RR-CC series circuit is connected to a 120 HzHz ac source that has VrmsVrmsV_rms =...

An LL-RR-CC series circuit is connected to a 120 HzHz ac source that has VrmsVrmsV_rms = 88.0 VV. The circuit has a resistance of 75.0 ΩΩ and an impedance at this frequency of 115 ΩΩ.

Part A

What average power is delivered to the circuit by the source?

Express your answer with the appropriate units.

PavPav =

nothing

Homework Answers

Answer #1

average power in seeries LCR circuit is given by

where V is the rms voltage

Z is the impedence

Cos is the power factor which is equal to R/Z

substitute the values in the above formula

P = V2(R/Z)/Z

P = V2R/Z2

P = 88*88*75/(115)2

P = 43.92 Watts

Please ask your doubts or queries in the comment section below.

Please kindly upvote if you are satisfied with the solution.

Thank you.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A transformer connected to a 120 −V ac line is to supply 12.0 VV (rms) to...
A transformer connected to a 120 −V ac line is to supply 12.0 VV (rms) to a portable electronic device. The load resistance in the secondary is 5.20 ΩΩ . - What should the ratio of primary to secondary turns of the transformer be, What rms current must the secondary supply? - What average power is delivered to the load, What resistance connected directly across the source line (which has a voltage of 120 −V) would draw the same power...
A series circuit consists of an ac source of variable frequency, a 127 Ω resistor, a...
A series circuit consists of an ac source of variable frequency, a 127 Ω resistor, a 1.45 μF capacitor, and a 5.00 mH inductor. a.) Find the impedance of this circuit when the angular frequency of the ac source is adjusted to the resonance angular frequency. Express your answer in ohms. b.) Find the impedance of this circuit when the angular frequency of the ac source is adjusted to twice the resonance angular frequency. Express your answer in ohms. c.)...
A 120 ΩΩ resistor is in series with a 0.110 HH inductor and a 0.460 μFμF...
A 120 ΩΩ resistor is in series with a 0.110 HH inductor and a 0.460 μFμF capacitor. Compute the impedance of the circuit at a frequency of f1f1 = 500 HzHz and at a frequency of f2f2 = 1000 HzHz . In each case, compute the phase angle of the source voltage with respect to the current. State whether the source voltage lags or leads the current at a frequency 500 HzHz . State whether the source voltage lags or...
An AC voltage source is connected in series to an inductor, a capacitor, and a resistor...
An AC voltage source is connected in series to an inductor, a capacitor, and a resistor of 5 Ohms. At the frequency when the phase angle is zero, capacitive reactance is 6 Ohms. What is the total impedance of the of the circuit at a frequency which is a factor of 2.4 times less than this frequency? Answer in Ohms.
A 65 ? resistor, an 8.0 ?F capacitor, and a 36 mHinductor are connected in series...
A 65 ? resistor, an 8.0 ?F capacitor, and a 36 mHinductor are connected in series in an ac circuit. Part A Calculate the impedance for a source frequency of 300 Hz. Express your answer to two significant figures and include the appropriate units. Z = SubmitRequest Answer Part B Calculate the impedance for a source frequency of 30.0 kHz. Express your answer to two significant figures and include the appropriate units. Z =
An L-R-C series circuit LLL = 0.122 HH , RRR = 244 ΩΩ , and CCC...
An L-R-C series circuit LLL = 0.122 HH , RRR = 244 ΩΩ , and CCC = 7.25 μFμF carries an rms current of 0.445 AA with a frequency of 397 HzHz . What is the power factor for this circuit? What is the impedance of the circuit? What is the rms voltage of the source?
Find the power efficiency of the RLC series circuit, when it connected to ac source. and...
Find the power efficiency of the RLC series circuit, when it connected to ac source. and all the value are given.calculate the power efficiency, not the power factor.
A 70 Ω resistor, an 9.0 μF capacitor, and a 36 mH inductor are connected in...
A 70 Ω resistor, an 9.0 μF capacitor, and a 36 mH inductor are connected in series in an ac circuit. a.) Calculate the impedance for a source frequency of 300 Hz. Express your answer with the appropriate units. b.) Calculate the impedance for a source frequency of 30.0 kHz. Express your answer with the appropriate units.
A 1.5-kΩ resistor and 30-mH inductor are connected in series, as shown below, across a 120-V...
A 1.5-kΩ resistor and 30-mH inductor are connected in series, as shown below, across a 120-V (rms) ac power source oscillating at 60-Hz frequency. (a) Find the current in the circuit. (b) Find the voltage drops across the resistor and inductor. (c) Find the impedance of the circuit. (d) Find the power dissipated in the resistor. (e) Find the power dissipated in the inductor. (f) Find the power produced by the source.
Consider an RLC circuit in series. In the circuit the AC source has an rms voltage...
Consider an RLC circuit in series. In the circuit the AC source has an rms voltage of 10 V and frequency of 25 kHz. The inductor is 0.50 mH, the capacitor is 0.10 μF, and resistor is 5.0 Ω. a) Determine the impedance b) Determine the voltage across the inductor, capacitor and resistor. c) Determine the phase angle. d) Is the voltage leading or lagging the current?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT