Question

THE FOLLOWING DATA was obtained on the initial rate of binding glucose to enzyme hexokinase.the rate...

THE FOLLOWING DATA was obtained on the initial rate of binding glucose to enzyme hexokinase.the rate law for this reaction is v0= k[glucose]a[hexokinase]a.prove the reaction follows pseduo first order and calculate the second order rate constant if the order with respect to hexokinase is 1.the concentration of hexokinase is 1.34mmol.dm3

[glucose]a (mmol.dm3) v0(dm3.mol.s-1)
1 5
1.54 7.61
3.12 15.5
4.02 20

Homework Answers

Answer #1

The reaction of interest is : ....

The rate law is assumed to have the form

In the method of initial rates, this rate law becomes

There are two ways to go about this problem, taking simple ratios and graphically.

1) For each possible combination of experiments, construct the ratio of the initial rates:

For the other combinations:

AVG order with respect to glucose ...

The effective 1 sts order rate constant is obtained by subsitution for each combination, AVG k = 4920 ....( assumes the enzyme is in excess)

2) For a graphical (better) solution. After fitting to a straight line, the slope will be x and the y- intercept will correspond to INk.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The following data were obtained at 25C for a reaction: aA + bB = cC Initial...
The following data were obtained at 25C for a reaction: aA + bB = cC Initial Concentrations Initial Reaction Rate Reaction [A] [B] M/s or mol/Ls 1 0.100 M 0.200 M 5.00x10^-4 2 0.150 M 0.200 M 7.50x10^-4 3 0.150 M 0.600 M 6.75x10^-3 What is the order of the reaction with respect to A? What is the order of the reaction with respect to B? What is the rate constant, k, for the reaction?
Learning Goal: To understand how to use integrated rate laws to solve for concentration. A car...
Learning Goal: To understand how to use integrated rate laws to solve for concentration. A car starts at mile marker 145 on a highway and drives at 55 mi/hr in the direction of decreasing marker numbers. What mile marker will the car reach after 2 hours? This problem can easily be solved by calculating how far the car travels and subtracting that distance from the starting marker of 145. 55 mi/hr×2 hr=110 miles traveled milemarker 145−110 miles=milemarker 35 If we...
The initial rate of a reaction depended upon concentration of a substance J as follows: [J0]/(mmol...
The initial rate of a reaction depended upon concentration of a substance J as follows: [J0]/(mmol dm^-3] 5.0 8.2 17 30 v0/ (10^-7mol dm^-3 s^-1) 3.6 8.6 41 130 Determine the rate order of the reaction with respect to J and calculate the rate consant
1)A second order reaction has a rate constant of 3.7 M-1min-1. if the initial concentration of...
1)A second order reaction has a rate constant of 3.7 M-1min-1. if the initial concentration of the reactant is 0.0100M, what is the concentration remaining after 15 min? a) .0099M b) .0056M c) .0025M d) .0064M 2) the rate constant for the first order decomposition of A at 500 degrees Celsius is 9.2 x 10 to the negative 3rd powers s-1. How long will it take for 90.8 % of a 0.500M sample of A to decompose a) 2.5 x...
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they...
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they resemble the equation for a straight line,y=mx+b. 1.) The reactant concentration in a zero-order reaction was 6.00×10−2M after 165 s and 3.50×10−2Mafter 385 s . What is the rate constant for this reaction? 2.)What was the initial reactant concentration for the reaction described in Part A? 3.)The reactant concentration in a first-order reaction was 6.70×10−2 M after 40.0 s and 2.50×10−3Mafter 95.0 s ....
Learning Goal: To understand reaction order and rate constants. For the general equation aA+bB?cC+dD, the rate...
Learning Goal: To understand reaction order and rate constants. For the general equation aA+bB?cC+dD, the rate law is expressed as follows: rate=k[A]m[B]n where m and n indicate the order of the reaction with respect to each reactant and must be determined experimentally and k is the rate constant, which is specific to each reaction. Order For a particular reaction, aA+bB+cC?dD, the rate law was experimentally determined to be rate=k[A]0[B]1[C]2=k[B][C]2 This equation is zero order with respect to A. Therefore, changing...
3)The thermal decomposition of acetaldehyde is a second order reaction CH3CHO-> CH4+CO from the data shown...
3)The thermal decomposition of acetaldehyde is a second order reaction CH3CHO-> CH4+CO from the data shown below, calculate the average rate of change in the pressure of acetaldehyde between 42 and 105 s. include the correct sign and units. ( this is analogous to finding the average rate of change in concentration, just substitute pressure for concentration.) 4) for the reaction shown below which one of the following statements can you rightly assume? 2H2S (g) +O2 (g) ->2S (s)+ 2H2O...
Consider the following data showing the initial rate of a reaction at several different concentrations of...
Consider the following data showing the initial rate of a reaction at several different concentrations of A. [A](M) 0.15 0.30 0.60 Initial Rate (M/s) 0.026 0.207 1.655 What is the order of the reaction? Express as an integer. What is the rate law? Estimate the value of the rate constant, k.
The following data were obtained for the variation of initial velocity and substrate for a reaction...
The following data were obtained for the variation of initial velocity and substrate for a reaction catalyzed by chymotrypsin (5nM) at pH 8, 37 °C. 1. Using a linear plot, determine the KM and Vmax of the chymotrypsin given the data below: (12) [S] (μM) V0 (μmol/min) 0    0 0.5 200 1.0    400 1.5    580 2.0    750 2.5    840 3.0    860 4.0    875 6.0    890 The kcat/KM parameter is a measure of...
Rate Law: Iodination of Acetone Experiment X trial   initial [A] initial [B] Rate (M/s) #1    1.00...
Rate Law: Iodination of Acetone Experiment X trial   initial [A] initial [B] Rate (M/s) #1    1.00 x 10-3 0.25 x 10-3 0.26 x 10-9 #2   1.00 x 10-3 0.50 x 10-3 0.52 x 10-9 #3   1.00 x 10-3 1.00 x 10-3 1.04 x 10-9 #4    2.00 x 10-3 1.00 x 10-3 4.16 x 10-9 #5    3.00 x 10-3 1.00 x 10-3 9.36 x 10-9 #6    4.00 x 10-3 1.00 x 10-3 16.64 x 10-9 Determine the rate law and calculate...