Question

Consider a one dimensional Harmonic oscillator. Use perturbation theory to find the energy corrections up to...

Consider a one dimensional Harmonic oscillator. Use perturbation theory to find the energy corrections up to second order in the perturbative parameter ? for a perturbative potential of the kind:

a) V = ?x

b) V = ?x^3.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a) For a 1D linear harmonic oscillator find the first order corrections to the ground state...
a) For a 1D linear harmonic oscillator find the first order corrections to the ground state due to the Gaussian perturbation. b) Find the first order corrections to the first excited state. Please show all work.
Using perturbation theory, find the energy of two coupled harmonic oscillators.
Using perturbation theory, find the energy of two coupled harmonic oscillators.
Consider a system of three non-interacting particles confined by a one-dimensional harmonic oscillator potential and in...
Consider a system of three non-interacting particles confined by a one-dimensional harmonic oscillator potential and in thermal equilibrium with a total energy of 7/2 ħw. (a) what are the possible occupation numbers for this system if the particles are distinquishable. (b) what is the most probable energy for a distinquishable picked at random from this system.
Consider a one-dimensional harmonic oscillator, in an energy eigenstate initially (at t=t0), to which we apply...
Consider a one-dimensional harmonic oscillator, in an energy eigenstate initially (at t=t0), to which we apply a time dependent force F(t). Write the Heisenberg equations of motion for x and for p. Now suppose F is a constant from time t0 to time t0+τ(tau), and zero the rest of the time. Find the average position of the oscillator <x(t)> as a function of time, after the force is switched off. Find the average amount of work done by the force,...
Consider the three-dimensional harmonic oscillator. Indicate the energy of the base state if twelve identical particles...
Consider the three-dimensional harmonic oscillator. Indicate the energy of the base state if twelve identical particles (spin 1) are placed in the system that do not interact with each other.
A harmonic oscillator with the usual PE of V(x)= (.5)kx^2 perturbed by a small change to...
A harmonic oscillator with the usual PE of V(x)= (.5)kx^2 perturbed by a small change to the spring constant k -->(1+E)k, with E<<1. 1. Write the new energy eigenvalues, making sure any parameters are clearly defined. 2. Expand the eigenvalue expression in a power series in E up to the second order using a Taylor series expansion. 3. What is the perturbation Hamiltonian in the problem?
Which of the following systems is degenerate? Question 4 options: a) Two-dimensional harmonic oscillator b) One-dimensional...
Which of the following systems is degenerate? Question 4 options: a) Two-dimensional harmonic oscillator b) One-dimensional Infinite square well c) One-dimensional finite square well d) One-dimensional harmonic oscillator e) All time-dependent systems
Quantum mechanics: Consider a particle initially in the ground state of the one-dimensional simple harmonic oscillator....
Quantum mechanics: Consider a particle initially in the ground state of the one-dimensional simple harmonic oscillator. A uniform electric field is abruptly turned on for a time t and then abruptly turned off again. What is the probability of transition to the first excited state?
(a) Write down the energy eigenvalues for a 3-dimensional oscillator with mass m and spring constant...
(a) Write down the energy eigenvalues for a 3-dimensional oscillator with mass m and spring constant kx= ky =kz and quantum number nx, ny and nz = 0, 1, 2, 3, 4 …. (b) Write down the degeneracy of the five lowest states of a 3-dimensional harmonic oscillator in terms of nx, ny and nz. (c) Show that the number of degeneracy of a 3-dimensional oscillator for the nth energy level is 1/2(n+1)(n+2).
Consider an electron bound in a three dimensional simple harmonic oscillator potential in the n=1 state....
Consider an electron bound in a three dimensional simple harmonic oscillator potential in the n=1 state. Recall that the e- has spin 1/2 and that the n=1 level of the oscillator has l =1. Thus, there are six states {|n=1, l=1, ml, ms} with ml= +1, 0, -1 and ms = +/- 1/2. - Using these states as a basis find the six states with definite j and mj where J = L +s - What are the energy levels...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT