Question

In an interference-diffraction pattern produced by 2 identical slits, which are separated by a distance of...

In an interference-diffraction pattern produced by 2 identical slits, which are separated by a distance of 0.60 mm, 9 bright fringes are observed inside the central diffraction maximum. What is the width of each slit?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The angular width of the central fringe of the interference pattern of 5 slits separated by...
The angular width of the central fringe of the interference pattern of 5 slits separated by d=4.0 micrometers with a wavelength of 20 micrometers is 0.01 radians. Each slit has a width of a=2 micrometers. The angular width of the central diffraction peak is 0.1 radians. How many interference fringes appear under the central diffraction peak? The correct answer is 15, but I'm not sure how to get there.
Two narrow slits are used to produce a double-slit interference pattern with monochromatic light. The slits...
Two narrow slits are used to produce a double-slit interference pattern with monochromatic light. The slits are separated by 8 mm, and the interference pattern is projected onto a screen 7 m away from the slits. The central bright fringe is at a certain spot on the screen. Using a ruler with one end placed at the central fringe, you move along the ruler passing by two more bright fringes and find that the next bright fringe is 23.5 mm...
An interference pattern is produced by light with a wavelength 560 nm from a distant source...
An interference pattern is produced by light with a wavelength 560 nm from a distant source incident on two identical parallel slits separated by a distance (between centers) of 0.550 mm . a) If the slits are very narrow, what would be the angular position of the first-order, two-slit, interference maxima? b)What would be the angular position of the second-order, two-slit, interference maxima in this case? c)Let the slits have a width 0.370 mm . In terms of the intensity...
An interference pattern is produced by light with a wavelength 600 nm from a distant source...
An interference pattern is produced by light with a wavelength 600 nm from a distant source incident on two identical parallel slits separated by a distance (between centers) of 0.500 mm . Part A If the slits are very narrow, what would be the angular position of the first-order, two-slit, interference maxima? Part B What would be the angular position of the second-order, two-slit, interference maxima in this case? Part C Let the slits have a width 0.330 mm ....
How many interference maxima will be contained in the central diffraction maximum in the interference-diffraction pattern...
How many interference maxima will be contained in the central diffraction maximum in the interference-diffraction pattern of two slits if the separation of the slits is exactly 13 times their width? m = ______ How many will there be if the slit separation is an integral multiple of the slit width (that is, d = na for any value of n)? (Use the following as necessary: n.) N = _____
Monochromatic light of wavelength λ1 is sent through two closely-spaced slits separated by a distance d1...
Monochromatic light of wavelength λ1 is sent through two closely-spaced slits separated by a distance d1 = 1.8 mm. A resulting interference pattern is shown on a screen L1 away. Another monochromatic light source, this one of wavelength λ2, is sent through a diffraction grating toward the same screen, resulting in a second interference pattern. The diffraction grating is a distance L2 from the screen and has 400 lines per mm etched onto it. A) Assume that L1 = L2...
An interference pattern is produced by light with a wavelength 550 nm from a distant source...
An interference pattern is produced by light with a wavelength 550 nm from a distant source incident on two identical parallel slits separated by a distance (between centers) of 0.580 mm . a) If the slits are very narrow, what would be the angular position of the first-order, two-slit, interference maxima? (Solve for theta, in radians) b) What would be the angular position of the second-order, two-slit, interference maxima in this case? (Solve for theta, in radians) c) Let the...
Coherent light (600 nm) passes through two narrow slits separated by 0.04 mm. An interference pattern...
Coherent light (600 nm) passes through two narrow slits separated by 0.04 mm. An interference pattern is observed on a screen at a distance 1.50 m away. (a) What is the vertical distance of the second maximum (not counting the central maximum) from the center of the interference pattern? (b) At what distance from the center does the intensity fall to 1/4th of the intensity at the center?
A double-slit experiment produces an interference pattern on a screen 2.8 m away from slits. Light...
A double-slit experiment produces an interference pattern on a screen 2.8 m away from slits. Light of wavelength λ= 460 nm  falls on the slits from a distant source. The distance between adjacent bright fringes is 6.2 mm. A) Find the distance between the two slits B) Determine the distance to the 6th order dark fringe from the central fringe
Light of wavelength 532 nm illuminates a pair of slits separated by a distance of d=...
Light of wavelength 532 nm illuminates a pair of slits separated by a distance of d= 0.42 mm. An interference pattern is observed on a screen placed a distance L away (L>>d). You may use the small angle approximation for this problem. What is the distance L if the width of the central bright spot of the interference pattern is delta(y) = 1.9 cm? The answer is supposed to be 15 m but i cant figure out how to get...