Question

A fan blade is rotating counter-clockwise and slowing down. What are the signs of ? and...

  1. A fan blade is rotating counter-clockwise and slowing down. What are the signs of ? and ??

    A. ? is positive and ? is positive. B. ?ispositiveand?isnegative.   C. ?isnegativeand?ispositive. D. ? is negative and ? is negative. E. ?ispositiveand?iszero.

Homework Answers

Answer #1

Whenever a rotating body is slowing down it means that its angular acceleration in acting in opposite direction i.e to slow down a rotating body acceleration will be in opposite direction so as to counter the Velocity.

As angular acceleration = angular velocity /time.

And as we discussed that angular acceleration will be acting in opposite direction hence it will be negative. Now as angular velocity (omega) is still acting in the same direction hence it will be positive. Now due to negative angular acceleration the rotating body will be stopped hence our answer is option B.

==>If your doubt is cleared please give an upvote it means a lot. Its a humble request to you. If you have any doubts feel free to ask in comment section.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An object moves on a curved path in a clockwise direction and is slowing down. What...
An object moves on a curved path in a clockwise direction and is slowing down. What is the direction of the acceleration?
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude of 0.240 rev/s. The magnitude of the angular acceleration is 0.907 rev/s2rev/s2 . Both the angular velocity and angular acceleration are directed clockwise. The electric ceiling fan blades form a circle of diameter 0.740 m. Part A: Compute the fan's angular velocity magnitude after time 0.209 ss has passed. Part B: Through how many revolutions has the blade turned in the time interval 0.209...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude of 0.290 rev/s . The magnitude of the angular acceleration is 0.887 rev/s2 . Both the the angular velocity and angular accleration are directed clockwise. The electric ceiling fan blades form a circle of diameter 0.760 m . a.) Compute the fan's angular velocity magnitude after time 0.209 s has passed. Express your answer numerically in revolutions per second. b.) Through how many revolutions...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude of 0.280 rev/s . The magnitude of the angular acceleration is 0.895 rev/s2 . Both the the angular velocity and angular accleration are directed counterclockwise. The electric ceiling fan blades form a circle of diameter 0.800 m. Help to answers part B-E. Answer for A is given A) Compute the fan's angular velocity magnitude after time 0.202 s has passed. = 0.461 rev/s B)...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude of 0.200 rev/s . The magnitude of the angular acceleration is 0.895 rev/s2 . Both the the angular velocity and angular acceleration are directed counterclockwise. The electric ceiling fan blades form a circle of diameter 0.780 m . (a) Compute the fan's angular velocity magnitude after time 0.209 s has passed. (b)Through how many revolutions has the blade turned in the time interval 0.209...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude of 0.280 rev/s . The magnitude of the angular acceleration is 0.893 rev/ s 2 . Both the the angular velocity and angular accleration are directed clockwise. The electric ceiling fan blades form a circle of diameter 0.710 m . Part A Compute the fan's angular velocity magnitude after time 0.191 s has passed. Express your answer numerically in revolutions per second. Part B...
A girl is sitting on the edge of a merry-go-round at a playground. Looking down at...
A girl is sitting on the edge of a merry-go-round at a playground. Looking down at the merry-go-round from above, it is rotating clockwise. What is the direction of the girl’s angular velocity vector? a. counter-clockwise b. clockwise c. upward d. downward If an object is rotating with a constant angular velocity, the instantaneous angular velocity and the average angular velocity ... a. are always the same. b. always have the same magnitude but only sometimes have the same direction....
Please show all work, thanks. A beetle with a mass of 30.0 g is initially at...
Please show all work, thanks. A beetle with a mass of 30.0 g is initially at rest on the outer edge of a horizontal turntable that is also initially at rest. The turntable, which is free to rotate with no friction about an axis through its center, has a mass of 95.0 g and can be treated as a uniform disk. The beetle then starts to walk around the edge of the turntable, traveling at an angular velocity of 0.0800...
A 70.0-cm diameter flywheel is initially rotating clockwise at 100 rpm. It then undergoes a constant...
A 70.0-cm diameter flywheel is initially rotating clockwise at 100 rpm. It then undergoes a constant counterclockwise angular acceleration of 2.50 radians per square second for 5.00 seconds. a) What is the magnitude of the initial angular velocity in units of radians per second?   b) What are the magnitude and direction of the final angular velocity of the flywheel at the end of the 5.00 second interval in units of rad/s?    c) What is the magnitude of the net angle...
Particles A and B are traveling counter-clockwise around a circular track at a constant speed of...
Particles A and B are traveling counter-clockwise around a circular track at a constant speed of 8 m/s . At the instant shown the speed of A begins to increase by (at)A=(0.8sA)m/s2 , where sA is in meters. Suppose that r = 6 m . Part A Determine the distance measured counterclockwise along the track from B to A when t = 1 s. Express your answer to three significant figures and include the appropriate units. d = Part B...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT