Question

A charged capacitor with C = 700 ?F is connected in series to an inductor that...

A charged capacitor with C = 700 ?F is connected in series to an inductor that has L = 0.410 H and negligible resistance. At an instant when the current in the inductor is i = 1.70 A , the current is increasing at a rate of di/dt=89.0A/s. During the current oscillations, what is the maximum voltage across the capacitor? I got 66.5579 volts and that was incorrect.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 23-Ω resistor, 58-μF capacitor, and 3.5-mH inductor are connected in series with an AC source...
A 23-Ω resistor, 58-μF capacitor, and 3.5-mH inductor are connected in series with an AC source of amplitude 12 V and frequency 120 Hz. Part (h) With a source voltage of Vsource = V0 cos(2πft), what is the instantaneous voltage, in volts, across the capacitor at time t = 2.25 s? Part (i) What is the amplitude of the voltage drop across the inductor, in volts? Part (j) With a source voltage of Vsource = V0cos(2πft), what is the instantaneous...
A capacitor C = 6 μF is connected in series with an inductor L = 135...
A capacitor C = 6 μF is connected in series with an inductor L = 135 mH and a battery V = 12 volts at t < 0. At t = 0, the battery is disconnected. a) What is the frequency of oscillations (ω& f) of this LC circuit? b) How many seconds will it take for the energy of the capacitor to be 3 times larger than the energy of the inductor? c) At 3 seconds, what is VL,...
A capacitor is fully charged and then connected in series to an inductor with zero resistance...
A capacitor is fully charged and then connected in series to an inductor with zero resistance wires. This is an ideal L-C circuit that will oscillate the current direction. Explain HOW and WHY this circuit oscillates and discuss energy conservation in this oscillation behavior. Your response should be at least 3 paragraphs to show your mastery of the concepts.
A capacitor is fully charged and then connected in series to an inductor with zero resistance...
A capacitor is fully charged and then connected in series to an inductor with zero resistance wires. This is an ideal L-C circuit that will oscillate the current direction. Explain HOW and WHY this circuit oscillates and discuss energy conservation in this oscillation behavior. Your response should be at least 3 paragraphs to show your mastery of the concepts.
A capacitor is fully charged and then connected in series to an inductor with zero resistance...
A capacitor is fully charged and then connected in series to an inductor with zero resistance wires. This is an ideal L-C circuit that will oscillate the current direction. Explain HOW and WHY this circuit oscillates and discuss energy conservation in this oscillation behavior. Your response should be at least 3 paragraphs to show your mastery of the concepts.
a resistor (R=750), a Capacitor (C=3.36uf) and inductor (L=2.34H) are connected in series across a 120Hz...
a resistor (R=750), a Capacitor (C=3.36uf) and inductor (L=2.34H) are connected in series across a 120Hz Ac source for which change in V=105V. a) calculate rms voltage across the capacitor b) calculate phase angle between the current and voltage c) is the current leading or lagging the voltage d) what is the average power delivered by the voltage source
] Consider a series RLC circuit. a) When the capacitor is charged and the circuit is...
] Consider a series RLC circuit. a) When the capacitor is charged and the circuit is closed, find the condition for the current to be oscillatory. b) When the circuit is connected to an AC source V = ?0 cos??, find the voltage across the inductor and the angular frequency at which the voltage across the inductor is maximized.
An LC circuit is connected in series with the capacitor initially charged. The period of oscillation...
An LC circuit is connected in series with the capacitor initially charged. The period of oscillation is T. If at t=0, there is no current in the circuit, what is the next time at which the voltage across the inductor achieves a maximum magnitude? Pick the correct choice from the following choices explaining your choice clearly: 1) T/4 2) T/2 3) 3T/4 4) T 5) 2T
A capacitor is charged with a battery. When the energy stored in the capacitor is 1...
A capacitor is charged with a battery. When the energy stored in the capacitor is 1 ??, the capacitor is disconnected from the battery in the circuit and connected in series with an inductor with an inductance of 6 ?H. What is the current in the inductor when the load on the capacitor is half the initial maximum value? (The resistance in the circuit can be neglected.)
A 16.0 μF capacitor and a 5.30 mH inductor are connected in series with an open...
A 16.0 μF capacitor and a 5.30 mH inductor are connected in series with an open switch. The capacitor is initially charged to 6.30 μC. What is the angular frequency of the charge oscillations in the capacitor after the switch is closed? ω = ________ rad/s
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT