Question

A distance of 5.60 cm is measured between two adjacent nodes of a standing wave on...

A distance of 5.60 cm is measured between two adjacent nodes of a standing wave on a 28.0 cm-long string.

HINT

(a)

In which harmonic number n is the string vibrating?

(b)

Find the frequency (in Hz) of this harmonic if the string has a mass of 1.25 ✕ 10−2 kg and a tension of 885 N.

Hz

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1) Selena measures the total distance between the nodes on either end of a standing wave...
1) Selena measures the total distance between the nodes on either end of a standing wave pattern to be 0.75 m, and she records that there were three antinodes between the endpoints. When she calculates half of the wavelength of the pattern, using these measurements, what is the result? Express your answer in meters. 4) Jerome has added mass to the holder and created the standing wave pattern. He observes that the string appears to have nodes where it meets...
Adjacent antinodes of a standing wave on a string are 15.0 cm apart. A particle at an antinode...
Adjacent antinodes of a standing wave on a string are 15.0 cm apart. A particle at an antinode oscillates in simple harmonic motion with amplitude 0.850 cm and period 0.0750 s. The string lies along the +x-axis and is fixed at x=0. How far apart are the adjacent nodes?
A standing wave pattern is created on a string with mass density μ = 3 ×...
A standing wave pattern is created on a string with mass density μ = 3 × 10-4 kg/m. A wave generator with frequency f = 63 Hz is attached to one end of the string and the other end goes over a pulley and is connected to a mass (ignore the weight of the string between the pulley and mass). The distance between the generator and pulley is L = 0.68 m. Initially the 3rd harmonic wave pattern is formed....
A standing wave pattern is created on a string with mass density μ = 3 ×...
A standing wave pattern is created on a string with mass density μ = 3 × 10-4 kg/m. A wave generator with frequency f = 63 Hz is attached to one end of the string and the other end goes over a pulley and is connected to a mass (ignore the weight of the string between the pulley and mass). The distance between the generator and pulley is L = 0.68 m. Initially the 3rd harmonic wave pattern is formed....
Standing waves on a 1.5-meter long string that is fixed at both ends are seen at...
Standing waves on a 1.5-meter long string that is fixed at both ends are seen at successive (that is, modes m and m + 1) frequencies of 38 Hz and 42 Hz respectively. The tension in the string is 720 N. What is the fundamental frequency of the standing wave? Hint: recall that every harmonic frequency of a standing wave is a multiple of the fundamental frequency. What is the speed of the wave in the string? What is the...
a) What are nodes and antinodes for a standing wave? b) How is the distance between...
a) What are nodes and antinodes for a standing wave? b) How is the distance between nodes related to the wavelength of a standing wave? c) How do standing waves look for a string? d) A pipe that is open at both ends? e) A pipe that is closed at one end and open at the other? please type your responses.
1. A cord of mass 0.65 kg is stretched between two supports 8.0 m apart. If...
1. A cord of mass 0.65 kg is stretched between two supports 8.0 m apart. If the tension in the cord is 140 N, how long will it take a pulse to travel from one support to the other? 2. A 50.0 Kg ball hangs from a steel wire 1.00 mm in diameter and 6.00 m long. What would be the speed of a wave in the steel wire? 3. The intensity of an earthquake wave passing through the earth...
4. Each pair of adjacent nodes, or each pair of adjacent antinodes, is separated by a...
4. Each pair of adjacent nodes, or each pair of adjacent antinodes, is separated by a distance of a. µ b. L c. λ/2 d. λ 5. Convert µ = 2.56 x 10-3 g/cm to SI units. a. 2.56 x 102 kg/m b. 2.56 x 10-2 kg/m c. 2.56 x 10-3 kg/m d. 2.56 x 10-4 kg/m 6. During the experiment, you measure a length of (66.0 ± 2.0) cm for four useable loops of the standing wave. Solve for...
What is the value of wavelength of the standing wave? Explain how you found it to...
What is the value of wavelength of the standing wave? Explain how you found it to get credit. Explain what a wavelength is. A vibrating experiment with a vibrating string at 95cm at a frequency of 25Hz, produce 5 loops.   A 150 cm of a string has a mass of 0.615 g. Calculate the linear density of the string. Explain how you did it. What is the unit of the linear density of the string? Calculate the wave’s velocity. Calculate...
A standing wave is set up in a L=2.00m long string fixed at both ends. The...
A standing wave is set up in a L=2.00m long string fixed at both ends. The string vibrates in its 5th harmonic when driven by a frequency f=120Hz source. The mass of the string is m=3.5grams. Recall that 1kg = 1000grams. A. Find the linear mass density of the string B. What is the wavelength of the standing wave C. What is the wave speed D. What is the tension in the string E. what is the first harmonic frequency...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT