Question

A hockey puck (mass = 1 kg) leaves the players stick with a speed of 30...

A hockey puck (mass = 1 kg) leaves the players stick with a speed of 30 m/s and slides on the ice for 30 meters before coming to rest.

What is the magnitude of the acceleration on the puck?
m/s2

Tries 0/2


What is the magnitude of the friction force exerted on the puck due to the ice?
N

Tries 0/2


What is the normal force on the puck?
N

Tries 0/2


What is the friction coefficient between the puck and the ice?
(unitless)

Homework Answers

Answer #1

12

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A hockey puck (mass = 3.5 kg) leaves the players stick (moving to the left) with...
A hockey puck (mass = 3.5 kg) leaves the players stick (moving to the left) with a speed of 28 m/s and slides on the ice before coming to rest. The coefficient of friction between the puck and the ice is 0.9. What is the normal force on the puck? N Tries 0/2 What is the friction force exerted on the puck due to the ice? N Tries 0/2 What is the magnitude of the acceleration of the puck due...
The hockey puck, shown in the figure, is struck by a hockey stick and given an...
The hockey puck, shown in the figure, is struck by a hockey stick and given an initial speed of 20.0 m/s on a frozen pond. The puck remains on the ice and slides 1.20 x 10^2 m , slowing down steadily until it comes to rest. Determine the coefficient of kinetic friction between the puck and the ice. (a) The acceleration of the puck is a = (b) The coefficient of kinetic friction between the puck and the ice is...
A 160g hockey puck initially moving with a speed of 5.00 m/s slides for 25.0 m...
A 160g hockey puck initially moving with a speed of 5.00 m/s slides for 25.0 m across the ice sheet of a hockey rink before coming to rest. What is the acceleration of the puck as it moves? What is the net force on the puck as it moves? Draw a free body diagram. label each force. What law of physcis can you use to relate the normal force on the puck to its weight? Derive the relation and evalutate...
7. A 77.0 kg ice hockey goalie, originally at rest, catches a 0.150 kg hockey puck...
7. A 77.0 kg ice hockey goalie, originally at rest, catches a 0.150 kg hockey puck slapped at him at a velocity of 34.0 m/s. Suppose the goalie and the ice puck have an elastic collision and the puck is reflected back in the direction from which it came. What would their final velocities (in m/s) be in this case? (Assume the original direction of the ice puck toward the goalie is in the positive direction. Indicate the direction with...
1`A puck of mass 0.110 kg slides across ice in the positive x-direction with a kinetic...
1`A puck of mass 0.110 kg slides across ice in the positive x-direction with a kinetic friction coefficient between the ice and puck of 0.167. If the puck is moving at an initial speed of 15.0 m/s, find the following. (a) What is the force of kinetic friction? (Indicate the direction with the sign of your answer.) N (b) What is the acceleration of the puck? (Indicate the direction with the sign of your answer.) m/s2 (c) How long does...
During practice, a hockey player passes the puck to his coach who is 6.5 m away...
During practice, a hockey player passes the puck to his coach who is 6.5 m away as shown in the figure below. The puck, which has a mass of 0.198 kg, was initially at rest. The hockey player exerts a constant 46.9-N force as his stick pushes the puck 0.17 m. Include only the puck in the system and assume the friction between the ice and the puck is negligible. (a) Draw a free-body diagram for the puck while it...
65A. A hockey puck is given an initial speed of 4.1 m/s. If the coefficient of...
65A. A hockey puck is given an initial speed of 4.1 m/s. If the coefficient of kinetic friction between the puck and the ice is 0.05, how far does the puck slide before coming to rest? Solve this problem using conservation of energy. Express your answer with the appropriate units. 65B. Consider a particle of mass mm = 18.0 kg revolving around an axis with angular speed ω r = 0.500 m . Assume ω = 29.0 rad/s-What is the...
An 160.0 g hockey puck slides along an essentially frictionless ice rink with speed 4.70 m/s....
An 160.0 g hockey puck slides along an essentially frictionless ice rink with speed 4.70 m/s. A hockey player uses her stick to do –1.20 J of work on the puck. What is the puck's speed after she has done this work? A. 0 m/s B. 2.66 m/s C. 3.50 m/s D. 4.53 m/s
A 70-kg hockey player, originally at rest, hits a 0.15-kg hockey puck slapped at him at...
A 70-kg hockey player, originally at rest, hits a 0.15-kg hockey puck slapped at him at a velocity of 35 m/s. Following the hit the ice puck reflected back at 34.85 m/s in the direction from which it came. Ignore friction. Determine the final velocity of the hockey player. Select one: a. -5.25 m/s b. 5.25 m/s c. 0 m/s d. 0.1497 m/s
In attempting to pass the puck to a teammate, a hockey player gives it an initial...
In attempting to pass the puck to a teammate, a hockey player gives it an initial speed of 1.97 m/s. However, this speed is inadequate to compensate for the kinetic friction between the puck and the ice. As a result, the puck travels only one-half the distance between the players before sliding to a halt. What minimum initial speed should the puck have been given so that it reached the teammate, assuming that the same force of kinetic friction acted...