Question

A car (mass = 2581 kg) is moving directly north at 4.88 m/s when it experiences...

A car (mass = 2581 kg) is moving directly north at 4.88 m/s when it experiences an impulse of 10,001 (kg*m)/s at 34.7° East of North. What is the car’s final velocity vector? Give the vector in terms of magnitude and direction.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 1000-kg sports car is moving north at speed 15 m/s on a level road when...
A 1000-kg sports car is moving north at speed 15 m/s on a level road when it collides with a 2000-kg truck driving east on the same road at speed 10 m/s. The two vehicles remain locked moving together after the collision at the origin of x-y plane. Assume that the rolling friction is too small to be ignored. A) explain what type of collision it is B) indicate the vector momentum by showing its magnitude and the (direction) angle...
A 1060 - kg car moving at 8.80 m/s is initially traveling north along the positive...
A 1060 - kg car moving at 8.80 m/s is initially traveling north along the positive direction of a y axis. After completing a 90° right-hand turn to the positive x direction in 4.00 s, the inattentive operator drives into a tree, which stops the car in 430 ms. In unit-vector notation, what is the impulse on the car during the turn? + In unit-vector notation, what is the impulse on the car during the collision? + What is the...
Question1) A car moving North at 12 m/s strikes a stationary car of equal mass. The...
Question1) A car moving North at 12 m/s strikes a stationary car of equal mass. The first car moves off after the collision at an angle of 30° East of North with a speed of 8.0 m/s. a.   What is the velocity of the struck car just after the collision? b.   Show that the collision is inelastic. c.   Explain how dents, skid marks, etc. show that kinetic energy has been lost. d.   If the collision were perfectly elastic, what would...
A car with a mass of 1,400 kg and a speed of 15 m/s heading north...
A car with a mass of 1,400 kg and a speed of 15 m/s heading north approaches an intersection. At the same time, a minivan with a mass of 1,800 kg and speed of 22 m/s heading east is also approaching the intersection. The car and the minivan collide and stick together. What is the velocity of the wrecked vehicles just after the collision? Ignore friction between the tires and the surface of the road. (Enter the magnitude in m/s...
A truck of mass 5000 kg was moving north at 45 km/h when it collided with...
A truck of mass 5000 kg was moving north at 45 km/h when it collided with a car of mass 1250 kg moving east at 90 km/h. Find the magnitude and direction of thre velocity of the vehicles after the collision, assuming they became entangled and moved together.
A car of mass m1 = 2000.0 kg is moving at speed v1i = 20.0m/s towards...
A car of mass m1 = 2000.0 kg is moving at speed v1i = 20.0m/s towards East. A truck of mass m2 = 5000.0 kg is moving at speed v2i = 10.0m/s towards North. They collide at an intersection and get entangled (complete inelastic collision). 1. What is the magnitude and direction of the final velocity of the entangled automobiles? 2. How much kinetic energy is lost in the collision. That is, calculate the change in the kinetic energy of...
A 1.38 × 104 kg railroad car moving at 7.64 m/s to the north collides with...
A 1.38 × 104 kg railroad car moving at 7.64 m/s to the north collides with and sticks to another railroad car of the same mass that is moving in the same direction at 1.94 m/s. What is the velocity of the joined cars after the collision?
A 2,500-kg car moving east at 10.0 m/s collides with a 3,000-kg car moving north. The...
A 2,500-kg car moving east at 10.0 m/s collides with a 3,000-kg car moving north. The cars stick together and move as a unit after the collision, at an angle of 35.0 degrees north of east and at a speed of 5.55 m/s. Find the speed of the 3,000-kg car before the collision. __________ m/s north
A 2500 kg car moving east at 10.0 m/s collides with a 3000 kg car moving...
A 2500 kg car moving east at 10.0 m/s collides with a 3000 kg car moving north. The cars stick together and move as a unit after the collision, at an angle of 47.0° north of east and at a speed of 6.66 m/s. Find the velocity of the 3000 kg car before the collision. m/s north
Object A (mass 10.0 kg) is moving due east with a velocity of v⃑A0 = 8.00...
Object A (mass 10.0 kg) is moving due east with a velocity of v⃑A0 = 8.00 m s EAST. Object B (mass 18.0 kg) is moving due north with a velocity of v⃑B0 = 5.00 m s NORTH. They collide and stick together. Find the magnitude and direction (in terms of an angle) of the two-object system following the collision.