Question

A particle is confined to the one-dimensional infinite potential well of the figure. If the particle...

A particle is confined to the one-dimensional infinite potential well of the figure. If the particle is in its ground state, what is the probability of detection between x = 0.20L and x = 0.65L?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A particle is confined to the one-dimensional infinite potential well of width L. If the particle...
A particle is confined to the one-dimensional infinite potential well of width L. If the particle is in the n=2 state, what is its probability of detection between a) x=0, and x=L/4; b) x=L/4, and x=3L/4; c) x=3L/4, and x=L? Hint: You can double check your answer if you calculate the total probability of the particle being trapped in the well. Please answer as soon as possible.
For a particle trapped in a one-dimensional infinite square well potential of length ?, find the...
For a particle trapped in a one-dimensional infinite square well potential of length ?, find the probability that the particle is in its ground state is in a) The left third of the box: 0 ≤ ? ≤ ?/3 b) The middle third of the box: ?/3 ≤ ? ≤ 2?/3 c) The right third of the box: 2?/3 ≤ ? ≤ L After doing parts a), b), and c): d) Calculate the sum of the probabilities you got for...
Eight electrons are confined to a two-dimensional infinite potential well with widths L_X = L y...
Eight electrons are confined to a two-dimensional infinite potential well with widths L_X = L y =L. Assume that the electrons do not electrically interact with one another. Considering electron spin and degeneracies of some energy levels, what is the total energy of the eight-electron system in its ground state, as a multiple of h^2/(8mL^2 )?
If an electron is confined to one-dimensional motion between two infinite potential walls which are separated...
If an electron is confined to one-dimensional motion between two infinite potential walls which are separated by a distance equal to Bohr radius, calculate energies of the three lowest states of motion.Calculate numerical value of ground state energy and compare it with hydrogen atom ground state energy.
If an electron is confined to one-dimensional motion between two infinite potential walls which are separated...
If an electron is confined to one-dimensional motion between two infinite potential walls which are separated by a distance equal to the Bohr radius, calculate the energies of the three lowest states of motion. Calculate numerical value of ground state energy and compare it with hydrogen atom ground state energy.
A particle is confined in a one-dimensional potential that is proportional to the absolute value of...
A particle is confined in a one-dimensional potential that is proportional to the absolute value of ?, where ?(?) = ? |?|, and ? is a real, positive constant. Use the variational method with the trial wave function ?(?) = ? ?−??2, where ? is a normalization constant and ? is a real, positive parameter to estimate the ground-state energy of this system. Note that this potential is an even function.
For the infinite square-well potential, find the probability that a particle in its third excited state...
For the infinite square-well potential, find the probability that a particle in its third excited state is in each third of the one-dimensional box: (0 ≤ x ≤ L/3) (L/3 ≤ x ≤ 2L/3) (2L/3 ≤ x ≤ L)
A particle is in the ground state of an infinite square well. The potential wall at...
A particle is in the ground state of an infinite square well. The potential wall at x = L suddenly (i.e., instantaneously) moves to x = 3L. such that the well is now three times its original size. (a) Let t = 0 be at the instant of the sudden change in the potential well. What is ψ(x, 0)? (b) If you measure the energy of the particle in the new well, what are the possible energies? (c) Estimate the...
For the infinite square-well potential, find the probability that a particle in its fourth excited state...
For the infinite square-well potential, find the probability that a particle in its fourth excited state is in each third of the one-dimensional box: a)  (0 ≤ x ≤ L/3) b) (L/3 ≤ x ≤ 2L/3) c) (2L/3 ≤ x ≤ L)
Consider a spinless particle of mass m, which is moving in a one-dimensional infinite potential well...
Consider a spinless particle of mass m, which is moving in a one-dimensional infinite potential well with walls at x = 0 and x = a. If and are given in Heisenberg picture, how can we find them in Schrodinger and interaction picture?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT