Question

The aluminum cup inside your calorimeter weighs 39.96 g. You add 49.96 g of ice cold...

The aluminum cup inside your calorimeter weighs 39.96 g. You add 49.96 g of ice cold water to the calorimeter. You measure the temperature of the calorimeter to be 0.5oC just before your next addition. You then add 50.44 g of hot water and a 50.10 g metal object, all having an initial temperature of 69.5oC. After the calorimeter reaches thermal equilibrium, the final temperature is measured to be 36.1oC. Assume that: the calorimeter is completely insulated the heat capacity of the empty calorimeter is the heat capacity of the aluminum cup: 0.903 J g-1 oC-1. the density of water is: 1.00 g/mL. the heat capacity of water is: 4.184 J g-1 oC-1. Perform all calculations without rounding, but then provide your answer to the correct number of significant figures.

Part A

What is the change in heat, q, experienced by the cold water, in units of J?

Part B

What is the change in heat, q, experienced by the aluminum cup, in units of J?

Part C

What is the change in heat, q, experienced by the hot water, in units of J?

Part D

What is the change in heat, q, experienced by the metal object, in units of J?

Homework Answers

Answer #1

Here we apply concept of calorimetry and heat balance equation. That is summation of change in heat of all individual elements will be zero.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The aluminum cup inside your calorimeter weighs 40.85 g. You add 49.81 g of water and...
The aluminum cup inside your calorimeter weighs 40.85 g. You add 49.81 g of water and 3.03 g of KCl to the calorimeter. The initial temperature is 20.1oC, and the final temperature is 16.9oC. What is the heat of dissolution for the amounts of salt added, in units of J? Assume that: the calorimeter is completely insulated the heat capacity of the empty calorimeter is the heat capacity of the aluminum cup. the mass of KCl added is small enough...
a. An ice cold piece of aluminum metal is added to 50.0 g of hot water....
a. An ice cold piece of aluminum metal is added to 50.0 g of hot water. Given the average initial temperature (76 C) calculated above for the hot water, calculate the heat, q, in joules of the piece of aluminum metal if the final temperature of the water is 40.0 °C. The specific heat of water is 4.184 J/g-°C. (0.50) b. Calculate the grams of aluminum metal used if the specific heat of aluminum is 0.895 J/g-°C. (0.50)
A coffee-cup calorimeter contains 130.0 g of water at 25.3 ∘C . A 124.0-g block of...
A coffee-cup calorimeter contains 130.0 g of water at 25.3 ∘C . A 124.0-g block of copper metal is heated to 100.4 ∘C by putting it in a beaker of boiling water. The specific heat of Cu(s) is 0.385 J/g⋅K . The Cu is added to the calorimeter, and after a time the contents of the cup reach a constant temperature of 30.3 ∘C . Part A Determine the amount of heat, in J , lost by the copper block....
A student wishes to determine the heat capacity of a coffee-cup calorimeter. After she mixes 95.8...
A student wishes to determine the heat capacity of a coffee-cup calorimeter. After she mixes 95.8 g of water at 62°C with 95.8 g of water, already in the calorimeter, at 18.2°C, the final temperature of the water is 35.0°C. Calculate the heat capacity of the calorimeter in J/K. Use 4.184 J/g°C as the specific heat of water.
When 10.0 g KOH is dissolved in 100.0 g of water in a coffee-cup calorimeter, the...
When 10.0 g KOH is dissolved in 100.0 g of water in a coffee-cup calorimeter, the temperature rises from 25.18 ˚C to 47.53 ˚C. Calculate the ∆Hrxn for the dissolution process. Assume that the solution has a specific heat capacity of 4.184 J/gK
An insulated aluminum calorimeter vessel of 150 g mass contains 300 g of liquid nitrogen boiling...
An insulated aluminum calorimeter vessel of 150 g mass contains 300 g of liquid nitrogen boiling at 77 K. A metal block at an initial temperature of 303 K is dropped into the liquid nitrogen. It boils away 15.8 g of nitrogen in reaching thermal equilibrium. The block is then withdrawn from the nitrogen and quickly transferred to a second insulated copper calorimeter vessel of 200 g mass containing 500 g of water at 30.1 degrees celsius. The block coolds...
SETUP In today’s lab we will measure specific heat using a calorimeter. A calorimeter consist of...
SETUP In today’s lab we will measure specific heat using a calorimeter. A calorimeter consist of a small metal cup inside a larger metal container, with a lid.  The cups are thermally separated from each other by means of air and a wooden ring, thus reducing the thermal conduction to a minimum. To keep track of how much water etc. we have, the whole calorimeter will be placed on a digital scale. Make sure to zero the scale before you place...
You drop a 291-g silver figure of a polar bear into the 247-g aluminum cup of...
You drop a 291-g silver figure of a polar bear into the 247-g aluminum cup of a well-insulated calorimeter containing 261 g of liquid water at 21.9°C. The bear\'s initial temperature is 97.9°C. What is the final temperature of the water, cup, and bear when they reach thermal equilibrium? The specific heats of silver, aluminum, and liquid water are, respectively, 234 J/(kg·K), 910 J/(kg·K), and 4190 J/(kg·K).
You drop a 297-g silver figure of a polar bear into the 247-g aluminum cup of...
You drop a 297-g silver figure of a polar bear into the 247-g aluminum cup of a well-insulated calorimeter containing 259 g of liquid water at 22.3°C. The bear\'s initial temperature is 98.5°C. What is the final temperature of the water, cup, and bear when they reach thermal equilibrium? The specific heats of silver, aluminum, and liquid water are, respectively, 234 J/(kg·K), 910 J/(kg·K), and 4190 J/(kg·K).
You drop a 285-g silver figure of a polar bear into the 241-g aluminum cup of...
You drop a 285-g silver figure of a polar bear into the 241-g aluminum cup of a well-insulated calorimeter containing 263 g of liquid water at 23.9°C. The bear\'s initial temperature is 95.9°C. What is the final temperature of the water, cup, and bear when they reach thermal equilibrium? The specific heats of silver, aluminum, and liquid water are, respectively, 234 J/(kg·K), 910 J/(kg·K), and 4190 J/(kg·K).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT