Question

A wheel of radius 1.20m begins to rotate from rest with an acceleration of 3.00rad/sec^2 a,...

A wheel of radius 1.20m begins to rotate from rest with an acceleration of 3.00rad/sec^2

a, how long does it take the wheel to reach a linear velocity of 12.0m/s at the outer rim?

b, what is the wheel's angular speed at the time found in Part (a)?

c, What is the total distance (in meters) the wheel has turned through during this time?

Homework Answers

Answer #1

Find the tangential acceleration using value of angular acceleration and radius. Use equation of kinematics where acceleration is equal to tangential acceleration to find the time taken to reach the given velocity

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A discus thrower (arm length 0.9 m) starts from rest and begins to rotate counterclockwise with...
A discus thrower (arm length 0.9 m) starts from rest and begins to rotate counterclockwise with a constant angular acceleration of +2.7 rad/s2. (a) How many radians of angle does it take for the discus thrower's angular velocity to reach +7.0 rad/s? rads (b) How long does this take? seconds At this time (from part b), please find the following quantities: (c) the linear speed of the discus: m/s (d) the size of the discus's tangential acceleration: m/s2 the size...
A wheel stars at rest, has a radius of 0.1m and has a moment of inertia...
A wheel stars at rest, has a radius of 0.1m and has a moment of inertia I=10kg*m^2. A constant torque of 3 N*m is applied to the wheel to cause counter-clockwise angular acceleration 1) what will the angular velocity of the wheel be when the angular displacement is 20*pi radians? 2) what will the tangentail speed of a point on the outer edge of the wheel be when the angular velocirt of the wheel is your answer to part 2?...
At a time t = 2.90 s , a point on the rim of a wheel...
At a time t = 2.90 s , a point on the rim of a wheel with a radius of 0.180 m has a tangential speed of 55.0 m/s as the wheel slows down with a tangential acceleration of constant magnitude 10.8 m/s^2 . A) Calculate the wheel's constant angular acceleration. B) Calculate the angular velocity at t = 2.90 s . C) Calculate the angular velocity at t=0. D) Through what angle did the wheel turn between t=0 and...
At a time t = 3.10 s , a point on the rim of a wheel...
At a time t = 3.10 s , a point on the rim of a wheel with a radius of 0.210 m has a tangential speed of 51.0 m/s as the wheel slows down with a tangential acceleration of constant magnitude 10.6 m/s2 . Calculate the wheel's constant angular acceleration.  rad/s^2   Calculate the angular velocity at t = 3.10 s. rad/s Calculate the angular velocity at t=0. rad/s Through what angle did the wheel turn between t=0 and t = 3.10...
7. A potter's wheel of radius 7.9 cm rotates with a period of .44 s. What...
7. A potter's wheel of radius 7.9 cm rotates with a period of .44 s. What are a) the linear speed b) the centripetal acceleration c) the angular velocity d) the angular acceleration of a small clump of clay half way to the rim of the wheel? 8. A student sits at rost on a piano stool that can rotate without friction. The moment of inertia of the student-stool system is 6.3 kg m'. A second student tosses a 2.3...
A Ferris wheel rotates at an angular velocity of 2.3 rev/min. Starting from rest, it reaches...
A Ferris wheel rotates at an angular velocity of 2.3 rev/min. Starting from rest, it reaches its operating speed with an average angular acceleration of 0.030 rad/s2. How long does it take the wheel to come up to operating speed? Through what angle (angular displacement) it rotates during this time?
1. A disk-shaped wheel, whose mass is 1.75kg and radius 0.6m, is rotating at an initial...
1. A disk-shaped wheel, whose mass is 1.75kg and radius 0.6m, is rotating at an initial angular speed of 30 rad / sec. It is brought to rest with constant angular acceleration. If the wheel spins 200 rad before stopping: a) Determine the angular acceleration of the wheel. b) The time it takes you to stop. c) The initial linear speed of a point on the edge of the wheel. d) The initial tangential acceleration of a point on the...
A wheel starts from rest and rotates about its axis with constant angular acceleration. After 5.7...
A wheel starts from rest and rotates about its axis with constant angular acceleration. After 5.7 s have elapsed, it has rotated through an angle of 20 radians. What is the angular acceleration of the wheel? What is the angular velocity when the time t = 5.7 s? What is the centripetal acceleration of a point on the wheel a distance r = 0.35 m from the axis at t = 5.7 s?
A wheel released from rest is rotating with constant angular acceleration of 2.5 rad/s2. (a) After...
A wheel released from rest is rotating with constant angular acceleration of 2.5 rad/s2. (a) After 2.5 s, what is its angular velocity? rad/s (b) Through what angle has the wheel turned? rad (c) How many revolutions has it made? rev (d) What is the speed of a point 1.0 m from the axis of rotation? m/s What is the magnitude of the total acceleration of the same point? m/s2
10) At a time t = 2.90 s , a point on the rim of a...
10) At a time t = 2.90 s , a point on the rim of a wheel with a radius of 0.200 m has a tangential speed of 45.0 m/s as the wheel slows down with a tangential acceleration of constant magnitude 10.3 m/s2 . Part A Calculate the wheel's constant angular acceleration.] Part B Calculate the angular velocity at t = 2.90 s . Part C Calculate the angular velocity at t=0. Part D Through what angle did the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT