Question

A man is driving his car with speed 53.0 mi/h on a horizontal stretch of road....

A man is driving his car with speed 53.0 mi/h on a horizontal stretch of road.

(a)

When the road is wet, the coefficient of static friction between the road and the tires is 0.105. Find the minimum stopping distance (in m).

m

(b)

When the road is dry,

μs = 0.595.

Find the minimum stopping distance (in m).

m

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A car is traveling at 47.0 km/h on a flat highway. (a) If the coefficient of...
A car is traveling at 47.0 km/h on a flat highway. (a) If the coefficient of friction between road and tires on a rainy day is 0.107, what is the minimum distance in which the car will stop? I kept getting 86.96302602 and it was wrong (b) What is the stopping distance when the surface is dry and the coefficient of friction is 0.535?
Jacqueline is driving on a horizontal highway at 44.7 m/s. If the coefficient of static friction...
Jacqueline is driving on a horizontal highway at 44.7 m/s. If the coefficient of static friction between road and tires on a rainy day is 0.48, what is the minimum distance in which Jacqueline's car will stop? Take g as 9.8 ms-2
a 900kg car moving on a flat, horizontal road negotiates a curve whose radius is 500m....
a 900kg car moving on a flat, horizontal road negotiates a curve whose radius is 500m. If the coefficient of static friction between the tires and the dry pavement is 0.523, find the maximum speed the car can have to make the turn successfully.
Mandy is driving her car east at a constant speed of 65 mi/h. Paul is driving...
Mandy is driving her car east at a constant speed of 65 mi/h. Paul is driving his car south at a constant speed of 60 mi/h. Find the rate at which the distance of Mandy and Paul is increasing after 2 hours.
A 2300 kg car moving at an initial speed of 25 m/s along a horizontal road...
A 2300 kg car moving at an initial speed of 25 m/s along a horizontal road skids to a stop in 50 m. (Note: When stopping without skidding and using conventional brakes, 100 percent of the kinetic energy is dissipated by friction within the brakes. With regenerative braking, such as that used in hybrid vehicles, only 70 percent of the kinetic energy is dissipated.) (a) Find the energy dissipated by friction. 718750 Incorrect: Your answer is incorrect. kJ (b) Find...
The friction between the tires of a car and a flat road provides the centripetal force...
The friction between the tires of a car and a flat road provides the centripetal force for a turn. For a 1800 kg car travelling at 25 m/s on a curve of radius 100 m: a. Calculate the normal force on the car from the road. b. Calculate the centripetal force required to turn the car safely. c. Calculate the minimum coefficient of static friction between the tires and road for the car to turn safely. d. Ice on the...
A car, 1110 kg, is traveling down a horizontal road at 20.0 m/s when it locks...
A car, 1110 kg, is traveling down a horizontal road at 20.0 m/s when it locks up its brakes. The coefficient of friction between the tires and road is 0.901. How much distance will it take to bring the car to a stop? ​
A car of 1000 kg with good tires on a dry road can decelerate (slow down)...
A car of 1000 kg with good tires on a dry road can decelerate (slow down) at a steady rate of about 5.0 m/s2 when braking. If a car is initially traveling at 20 m/s (45 mi/h), (a) How much time does it take the car to stop? (b) What is its stopping distance? (c) What is the deacceleration? (d) How big is the net force to be applied to stop this car? (e) Calculate the work done by this...
Two cars are traveling on level terrain at 60 mi/h on a road with a coefficient...
Two cars are traveling on level terrain at 60 mi/h on a road with a coefficient of adhesion of 0.8. The driver of car 1 has a 2.5-s perception/reaction time and the driver of car 2 has a 2.1-s perception/reaction time. Both cars are traveling side by side and the drivers are able to stop their respective cars in the same distance after first seeing a roadway obstacle (perception and reaction plus vehicle stopping distance). If the braking efficiency of...
A curve of radius 20 m is banked so that a 1100 kg car traveling at...
A curve of radius 20 m is banked so that a 1100 kg car traveling at 30 km/h can round it even if the road is so icy that the coefficient of static friction is approximately zero. The acceleration of gravity is 9.81 m/s 2 . Find the minimum speed at which a car can travel around this curve without skidding if the coefficient of static friction between the road and the tires is 0.3. Answer in units of m/s.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT